Effect of Cell Geometry on the Electrochemical Parameters of Solid Oxide Fuel Cell Cathodes

被引:28
作者
Kuengas, Rainer [1 ]
Kivi, Indrek [1 ]
Lust, Enn [1 ]
机构
[1] Univ Tartu, Inst Chem, EE-51014 Tartu, Estonia
关键词
CRYSTAL-STRUCTURE; OXYGEN REDUCTION; ELECTRODE; IMPEDANCE; TRANSPORT; ANODE;
D O I
10.1149/1.3043421
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A series of electrochemical impedance experiments has been carried out in order to investigate the effect of cell composition and geometry on the determination of electrochemical characteristics of strontium-doped lanthanum cobaltite (La0.6Sr0.4CoO3-delta) cathodes. The impedence responses at different electrode potentials of the half-cell and symmetric single-cell setups are compared and analyzed by the equivalent circuit modeling method. The deconvolution of impedence spectra for single cells has been achieved by a differential impedence real part vs ac frequency plot analysis method. The results indicate that the three-electrode half-cell configuration is more suitable for fundamental research of material parameters at different electrode potentials (measured vs Pt vertical bar O-2 reference electrode), whereas the simpler two-electrode single-cell setup allows the estimation of cathode performance in approximate working conditions. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.3043421] All rights reserved.
引用
收藏
页码:B345 / B352
页数:8
相关论文
共 50 条
[31]   Finite-Element Modeling of Idealized Infiltrated Composite Solid Oxide Fuel Cell Cathodes [J].
Nicholas, Jason D. ;
Barnett, Scott A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (04) :B458-B464
[32]   Nonlinear electrochemical impedance spectroscopy for solid oxide fuel cell cathode materials [J].
Wilson, JR ;
Schwartz, DT ;
Adler, SB .
ELECTROCHIMICA ACTA, 2006, 51 (8-9) :1389-1402
[33]   Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes [J].
Waldbillig, D ;
Wood, A ;
Ivey, DG .
JOURNAL OF POWER SOURCES, 2005, 145 (02) :206-215
[34]   Shorting current analysis for solid oxide fuel cell [J].
Huang, Qiu-An ;
Wang, Bingwen .
2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, :1596-1598
[35]   Advances in nanoengineering of cathodes for next-generation solid oxide fuel cells [J].
Sun, Chunwen .
INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (23) :8164-8182
[36]   Towards Quantification of Local Electrochemical Parameters in Microstructures of Solid Oxide Fuel Cell Electrodes using High Performance Computations [J].
Hsu, T. ;
Mahbub, R. ;
Epting, W. K. ;
Abernathy, H. ;
Hackett, G. A. ;
Rollett, A. D. ;
Litster, S. ;
Salvador, P. A. .
SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01) :2711-2722
[37]   THE EFFECT OF ANODE POROSITY ON THE PERFORMANCE OF PLANAR ELECTRODE SUPPORTED SOLID OXIDE FUEL CELL [J].
Yu, Jianguo ;
Wang, Yuzhang ;
Weng, Shilie ;
Hui, Yu .
MNHMT2009, VOL 2, 2010, :259-264
[38]   Electrochemical Study of the Versatility of a Solid Cell Working both as Fuel Cell and Electrolysis Modes [J].
Pichot, E. ;
Olivon, M. ;
Perraud, A. ;
Joubert, O. ;
Le Gal La Salle, A. .
FUEL CELLS, 2020, 20 (03) :332-341
[39]   Effect of reduction temperature on the electrochemical properties of a Ni/YSZ anode-supported solid oxide fuel cell [J].
Li, Ting Shuai ;
Wang, Wei Guo ;
Miao, He ;
Chen, Tao ;
Xu, Cheng .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 495 (01) :138-143
[40]   Effect of temperature on the electrode reactions in a planar solid oxide fuel cell [J].
Koomson, Samuel ;
Lee, Choong-Gon .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 947