Computer-aided grading of gliomas based on local and global MRI features

被引:71
作者
Hsieh, Kevin Li-Chun [1 ,2 ]
Lo, Chung-Ming [3 ]
Hsiao, Chih-Jou [3 ]
机构
[1] Taipei Med Univ Hosp, Dept Med Imaging, Taipei, Taiwan
[2] Taipei Med Univ, Coll Med, Translat Imaging Res Ctr, Taipei, Taiwan
[3] Taipei Med Univ, Coll Med Sci & Technol, Grad Inst Biomed Informat, Taipei 11031, Taiwan
关键词
Brain tumor; Diffuse glioma; Glioblastoma; Computer-aided diagnosis; Image moment; Magnetic resonance imaging; HEALTH-ORGANIZATION CLASSIFICATION; GLIOBLASTOMA-MULTIFORME; TEXTURE ANALYSIS; GENE-EXPRESSION; BRAIN; ASTROCYTOMA; DIAGNOSIS; TUMORS;
D O I
10.1016/j.cmpb.2016.10.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objectives: A computer-aided diagnosis (CAD) system based on quantitative magnetic resonance imaging (MRI) features was developed to evaluate the malignancy of diffuse gliomas, which are central nervous system tumors. Methods: The acquired image database for the CAD performance evaluation was composed of 34 glioblastomas and 73 diffuse lower-grade gliomas. In each case, tissues enclosed in a delineated tumor area were analyzed according to their gray-scale intensities on MRI scans. Four histogram moment features describing the global gray-scale distributions of gliomas tissues and 14 textural features were used to interpret local correlations between adjacent pixel values. With a logistic regression model, the individual feature set and a combination of both feature sets were used to establish the malignancy prediction model. Results: Performances of the CAD system using global, local, and the combination of both image feature sets achieved accuracies of 76%, 83%, and 88%, respectively. Compared to global features, the combined features had significantly better accuracy (p = 0.0213). With respect to the pathology results, the CAD classification obtained substantial agreement kappa = 0.698, p < 0.001. Conclusions: Numerous proposed image features were significant in distinguishing glioblastomas from lower-grade gliomas. Combining them further into a malignancy prediction model would be promising in providing diagnostic suggestions for clinical use. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 37 条
[1]  
ALBRIGHT AL, 1993, NEUROSURGERY, V33, P1026
[2]   RETRACTED: Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging (Retracted article. See vol. 114, pg. 255, 2013) [J].
Arvinda, H. R. ;
Kesavadas, C. ;
Sarma, P. S. ;
Thomas, B. ;
Radhakrishnan, V. V. ;
Gupta, A. K. ;
Kapilamoorthy, T. R. ;
Nair, S. .
JOURNAL OF NEURO-ONCOLOGY, 2009, 94 (01) :87-96
[3]   Percent Change of Perfusion Skewness and Kurtosis: A Potential Imaging Biomarker for Early Treatment Response in Patients with Newly Diagnosed Glioblastomas [J].
Baek, Hye Jin ;
Kim, Ho Sung ;
Kim, Namkug ;
Choi, Young Jun ;
Kim, Young Joong .
RADIOLOGY, 2012, 264 (03) :834-843
[4]   Grading of supratentorial astrocytic tumors by using the difference of ADC value [J].
Bai, Xu ;
Zhang, Yunting ;
Liu, Ying ;
Han, Tong ;
Liu, Li .
NEURORADIOLOGY, 2011, 53 (07) :533-539
[5]   Imaging update: New windows, new views [J].
Blasberg, Ronald G. .
CLINICAL CANCER RESEARCH, 2007, 13 (12) :3444-3448
[6]   Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas [J].
Brat, Daniel J. ;
Verhaak, Roel G. W. ;
Al-dape, Kenneth D. ;
Yung, W. K. Alfred ;
Salama, Sofie R. ;
Cooper, Lee A. D. ;
Rheinbay, Esther ;
Miller, C. Ryan ;
Vitucci, Mark ;
Morozova, Olena ;
Robertson, A. Gordon ;
Noushmehr, Houtan ;
Laird, Peter W. ;
Cherniack, Andrew D. ;
Akbani, Rehan ;
Huse, Jason T. ;
Ciriello, Giovanni ;
Poisson, Laila M. ;
Barnholtz-Sloan, Jill S. ;
Berger, Mitchel S. ;
Brennan, Cameron ;
Colen, Rivka R. ;
Colman, Howard ;
Flanders, Adam E. ;
Giannini, Caterina ;
Grifford, Mia ;
Iavarone, Antonio ;
Jain, Rajan ;
Joseph, Isaac ;
Kim, Jaegil ;
Kasaian, Katayoon ;
Mikkelsen, Tom ;
Murray, Bradley A. ;
O'Neill, Brian Patrick ;
Pachter, Lior ;
Parsons, Donald W. ;
Sougnez, Carrie ;
Sulman, Erik P. ;
Vandenberg, Scott R. ;
Van Meir, Erwin G. ;
von Deimling, Andreas ;
Zhang, Hailei ;
Crain, Daniel ;
Lau, Kevin ;
Mallery, David ;
Morris, Scott ;
Paulauskis, Joseph ;
Penny, Robert ;
Shelton, Troy ;
Sherman, Mark .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) :2481-2498
[7]  
BURGER PC, 1985, CANCER-AM CANCER SOC, V56, P1106, DOI 10.1002/1097-0142(19850901)56:5<1106::AID-CNCR2820560525>3.0.CO
[8]  
2-2
[9]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[10]  
Coons SW, 1997, CANCER, V79, P1381, DOI 10.1002/(SICI)1097-0142(19970401)79:7<1381::AID-CNCR16>3.0.CO