Computer-aided grading of gliomas based on local and global MRI features

被引:70
作者
Hsieh, Kevin Li-Chun [1 ,2 ]
Lo, Chung-Ming [3 ]
Hsiao, Chih-Jou [3 ]
机构
[1] Taipei Med Univ Hosp, Dept Med Imaging, Taipei, Taiwan
[2] Taipei Med Univ, Coll Med, Translat Imaging Res Ctr, Taipei, Taiwan
[3] Taipei Med Univ, Coll Med Sci & Technol, Grad Inst Biomed Informat, Taipei 11031, Taiwan
关键词
Brain tumor; Diffuse glioma; Glioblastoma; Computer-aided diagnosis; Image moment; Magnetic resonance imaging; HEALTH-ORGANIZATION CLASSIFICATION; GLIOBLASTOMA-MULTIFORME; TEXTURE ANALYSIS; GENE-EXPRESSION; BRAIN; ASTROCYTOMA; DIAGNOSIS; TUMORS;
D O I
10.1016/j.cmpb.2016.10.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objectives: A computer-aided diagnosis (CAD) system based on quantitative magnetic resonance imaging (MRI) features was developed to evaluate the malignancy of diffuse gliomas, which are central nervous system tumors. Methods: The acquired image database for the CAD performance evaluation was composed of 34 glioblastomas and 73 diffuse lower-grade gliomas. In each case, tissues enclosed in a delineated tumor area were analyzed according to their gray-scale intensities on MRI scans. Four histogram moment features describing the global gray-scale distributions of gliomas tissues and 14 textural features were used to interpret local correlations between adjacent pixel values. With a logistic regression model, the individual feature set and a combination of both feature sets were used to establish the malignancy prediction model. Results: Performances of the CAD system using global, local, and the combination of both image feature sets achieved accuracies of 76%, 83%, and 88%, respectively. Compared to global features, the combined features had significantly better accuracy (p = 0.0213). With respect to the pathology results, the CAD classification obtained substantial agreement kappa = 0.698, p < 0.001. Conclusions: Numerous proposed image features were significant in distinguishing glioblastomas from lower-grade gliomas. Combining them further into a malignancy prediction model would be promising in providing diagnostic suggestions for clinical use. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 37 条
  • [1] ALBRIGHT AL, 1993, NEUROSURGERY, V33, P1026
  • [2] RETRACTED: Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging (Retracted article. See vol. 114, pg. 255, 2013)
    Arvinda, H. R.
    Kesavadas, C.
    Sarma, P. S.
    Thomas, B.
    Radhakrishnan, V. V.
    Gupta, A. K.
    Kapilamoorthy, T. R.
    Nair, S.
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2009, 94 (01) : 87 - 96
  • [3] Percent Change of Perfusion Skewness and Kurtosis: A Potential Imaging Biomarker for Early Treatment Response in Patients with Newly Diagnosed Glioblastomas
    Baek, Hye Jin
    Kim, Ho Sung
    Kim, Namkug
    Choi, Young Jun
    Kim, Young Joong
    [J]. RADIOLOGY, 2012, 264 (03) : 834 - 843
  • [4] Grading of supratentorial astrocytic tumors by using the difference of ADC value
    Bai, Xu
    Zhang, Yunting
    Liu, Ying
    Han, Tong
    Liu, Li
    [J]. NEURORADIOLOGY, 2011, 53 (07) : 533 - 539
  • [5] Imaging update: New windows, new views
    Blasberg, Ronald G.
    [J]. CLINICAL CANCER RESEARCH, 2007, 13 (12) : 3444 - 3448
  • [6] Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas
    Brat, Daniel J.
    Verhaak, Roel G. W.
    Al-dape, Kenneth D.
    Yung, W. K. Alfred
    Salama, Sofie R.
    Cooper, Lee A. D.
    Rheinbay, Esther
    Miller, C. Ryan
    Vitucci, Mark
    Morozova, Olena
    Robertson, A. Gordon
    Noushmehr, Houtan
    Laird, Peter W.
    Cherniack, Andrew D.
    Akbani, Rehan
    Huse, Jason T.
    Ciriello, Giovanni
    Poisson, Laila M.
    Barnholtz-Sloan, Jill S.
    Berger, Mitchel S.
    Brennan, Cameron
    Colen, Rivka R.
    Colman, Howard
    Flanders, Adam E.
    Giannini, Caterina
    Grifford, Mia
    Iavarone, Antonio
    Jain, Rajan
    Joseph, Isaac
    Kim, Jaegil
    Kasaian, Katayoon
    Mikkelsen, Tom
    Murray, Bradley A.
    O'Neill, Brian Patrick
    Pachter, Lior
    Parsons, Donald W.
    Sougnez, Carrie
    Sulman, Erik P.
    Vandenberg, Scott R.
    Van Meir, Erwin G.
    von Deimling, Andreas
    Zhang, Hailei
    Crain, Daniel
    Lau, Kevin
    Mallery, David
    Morris, Scott
    Paulauskis, Joseph
    Penny, Robert
    Shelton, Troy
    Sherman, Mark
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) : 2481 - 2498
  • [7] BURGER PC, 1985, CANCER-AM CANCER SOC, V56, P1106, DOI 10.1002/1097-0142(19850901)56:5<1106::AID-CNCR2820560525>3.0.CO
  • [8] 2-2
  • [9] Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    Chin, L.
    Meyerson, M.
    Aldape, K.
    Bigner, D.
    Mikkelsen, T.
    VandenBerg, S.
    Kahn, A.
    Penny, R.
    Ferguson, M. L.
    Gerhard, D. S.
    Getz, G.
    Brennan, C.
    Taylor, B. S.
    Winckler, W.
    Park, P.
    Ladanyi, M.
    Hoadley, K. A.
    Verhaak, R. G. W.
    Hayes, D. N.
    Spellman, Paul T.
    Absher, D.
    Weir, B. A.
    Ding, L.
    Wheeler, D.
    Lawrence, M. S.
    Cibulskis, K.
    Mardis, E.
    Zhang, Jinghui
    Wilson, R. K.
    Donehower, L.
    Wheeler, D. A.
    Purdom, E.
    Wallis, J.
    Laird, P. W.
    Herman, J. G.
    Schuebel, K. E.
    Weisenberger, D. J.
    Baylin, S. B.
    Schultz, N.
    Yao, Jun
    Wiedemeyer, R.
    Weinstein, J.
    Sander, C.
    Gibbs, R. A.
    Gray, J.
    Kucherlapati, R.
    Lander, E. S.
    Myers, R. M.
    Perou, C. M.
    McLendon, Roger
    [J]. NATURE, 2008, 455 (7216) : 1061 - 1068
  • [10] Coons SW, 1997, CANCER, V79, P1381, DOI 10.1002/(SICI)1097-0142(19970401)79:7<1381::AID-CNCR16>3.0.CO