Wave Decay on Convex Co-Compact Hyperbolic Manifolds

被引:17
作者
Guillarmou, Colin [1 ]
Naud, Frederic [2 ]
机构
[1] Univ Nice, Lab Math J Dieudonne, Nice, France
[2] Univ Avignon, Lab Anal Nonlineaire & Geometrie, F-84000 Avignon, France
关键词
SELBERG ZETA-FUNCTION; LENGTH SPECTRUM; COMPLETE SPACES; LOCAL ENERGY; LIMIT SET; RESONANCES; SCATTERING; BOUNDS; ASYMPTOTICS; EXPANSIONS;
D O I
10.1007/s00220-008-0706-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For convex co-compact hyperbolic quotients X = Gamma\Hn+1, we analyze the long-time asymptotic of the solution of the wave equation u(t) with smooth compactly supported initial data f = (f(0), f(1)). We show that, if the Hausdorff dimension delta of the limit set is less than n/2, then u(t) = C-delta(f)e(delta-(n/2)t)/Gamma(delta - n/2 + 1) + e((delta- n/2)t) R(t), where C-delta(f) is an element of C-infinity(X) and ||R(t)|| = O(t(-infinity)). We explain, in terms of conformal theory of the conformal infinity of X, the special cases delta is an element of n/2-N, where the leading asymptotic term vanishes. In a second part, we show for all epsilon > 0 the existence of an infinite number of resonances (and thus zeros of Selberg zeta function) in the strip {-n delta - epsilon < Re(lambda) < delta}. As a byproduct we obtain a lower bound on the remainder R( t) for generic initial data
引用
收藏
页码:489 / 511
页数:23
相关论文
共 41 条
[1]   Decay and non-decay of the local energy for the wave equation on the De Sitter-Schwarzschild metric [J].
Bony, Jean-Francois ;
Hafner, Dietrich .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (03) :697-719
[2]   Resolvent estimates and local energy decay for hyperbolic equations [J].
Bony, Jean-Francois ;
Petkov, Vesselin .
ANNALI DELL'UNIVERSITA DI FERRARA SEZIONE VII, SCIENZE MATEMATICHE, VOL 52, NO 2, 2006, 52 (02) :233-+
[4]   Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group [J].
Bunke, U ;
Olbrich, M .
ANNALS OF MATHEMATICS, 1999, 149 (02) :627-689
[5]   Resonance expansions in semi-classical propagation [J].
Burq, N ;
Zworski, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (01) :1-12
[6]   Resonance wave expansions: Two hyperbolic examples [J].
Christiansen, T ;
Zworski, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (02) :323-336
[7]   On decay of correlations in Anosov flows [J].
Dolgopyat, D .
ANNALS OF MATHEMATICS, 1998, 147 (02) :357-390
[8]  
FRIED D, 1986, ANN SCI ECOLE NORM S, V19, P491
[9]  
Graham C.R., 2000, P 19 WINTER SCH GEOM, P31
[10]   CONFORMALLY INVARIANT POWERS OF THE LAPLACIAN .1. EXISTENCE [J].
GRAHAM, CR ;
JENNE, R ;
MASON, LJ ;
SPARLING, GAJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 46 :557-565