Note on solving solitary wave solution by the hyperbolic function method

被引:35
作者
Guo, GP [1 ]
Zhang, JF
机构
[1] Zhejiang Normal Univ, Coll Educ Sci & Technol, Jinhua 321004, Peoples R China
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
关键词
hyperbolic function method; solitary wave solution; nonlinear wave equation;
D O I
10.7498/aps.51.1159
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a note on solving the solitary wave solution of the nonlinear wave equation using the hyperbolic function method. It can be seen that the hyperbolic function method is a simple and effective method in studying the solitary wave solution of the nonlinear evolution equation.
引用
收藏
页码:1159 / 1162
页数:4
相关论文
共 20 条
[1]  
ABLOWITZ MJP, 1991, SOLITONS NONLINEAR E, P200
[2]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[3]  
FAN EG, 1998, ACTA PHYS SINICA, V47, P353
[4]  
FANG EG, 2000, ACTA PHYS SINICA, V49, P1409
[5]  
GU CH, 1990, SOLITON THEORY ITS A, P160
[6]   EXACT N-SOLITON SOLUTIONS OF WAVE-EQUATION OF LONG WAVES IN SHALLOW-WATER AND IN NONLINEAR LATTICES [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :810-814
[7]   EXACT-SOLUTIONS OF THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1990, 147 (5-6) :287-291
[8]   Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2001, 50 (11) :2068-2073
[9]  
LOU SY, 1998, ACTA PHYS SINICA, V47, P1937
[10]   The solitary wave solutions to KdV-Burgers equation [J].
Lü, KP ;
Shi, YR ;
Duan, WS ;
Zhao, JB .
ACTA PHYSICA SINICA, 2001, 50 (11) :2074-2076