Synchronizability of two-layer networks

被引:50
作者
Xu, Mingming [1 ]
Zhou, Jin [1 ,2 ]
Lu, Jun-an [1 ]
Wu, Xiaoqun [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
基金
中国国家自然科学基金;
关键词
Statistical and Nonlinear Physics;
D O I
10.1140/epjb/e2015-60330-0
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, we investigate the synchronizability of two-layer networks according to the master stability method. We define three particular couplings: positively correlated, randomly correlated and negatively correlated couplings. When the inter-layer coupling strength is fixed, negatively correlated coupling leads to the best synchronizability of a two-layer network, and synchronizability of networks with randomly and positively correlated couplings follow consecutively. For varying inter-layer coupling strength, the trend of network synchronizability with an unbounded synchronous region differs from that with a bounded one. If the synchronous region is unbounded, synchronizability of the two-layer network keeps enhancing, but it has a threshold. If the synchronous region is bounded, the synchronizability of the two-layer network keeps improving until the inter-layer coupling strength reaches a certain value, and then the synchronizability gets weakened with ever-increasing inter-layer coupling strength. To summarise, there exists an optimal value of the inter-layer coupling strength for maximising synchronizability of two-layer networks, regardless of the synchronous region types and coupling patterns. The findings provided in this paper shed new light on understanding synchronizability of multilayer networks, and may find potential applications in designing optimal inter-layer couplings for synchronization of two-layer networks.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Synchronization of Interconnected Networks: The Role of Connector Nodes [J].
Aguirre, J. ;
Sevilla-Escoboza, R. ;
Gutierrez, R. ;
Papo, D. ;
Buldu, J. M. .
PHYSICAL REVIEW LETTERS, 2014, 112 (24)
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Statistical mechanics of multiplex networks: Entropy and overlap [J].
Bianconi, Ginestra .
PHYSICAL REVIEW E, 2013, 87 (06)
[4]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[5]  
Chen G., 2007, THEORY APPL MATRIX
[6]  
D'Agostino G, 2014, UNDERST COMPLEX SYST, pVII
[7]  
Diaz-Guilera A., 2009, INT J BIFURCAT CHAOS, V19, P2
[8]  
Gao Y. Y., 2012, COMPLEX SYSTEMS COMP, V9, P3
[9]   Diffusion Dynamics on Multiplex Networks [J].
Gomez, S. ;
Diaz-Guilera, A. ;
Gomez-Gardenes, J. ;
Perez-Vicente, C. J. ;
Moreno, Y. ;
Arenas, A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (02)
[10]   Evolutionary dynamics on interdependent populations [J].
Gomez-Gardenes, Jesus ;
Gracia-Lazaro, Carlos ;
Mario Floria, Luis ;
Moreno, Yamir .
PHYSICAL REVIEW E, 2012, 86 (05)