A note on geometrically convex functions

被引:3
作者
Ozdemir, Muhamet Emin [1 ]
Yildiz, Cetin [1 ]
Gurbuz, Mustafa [2 ]
机构
[1] Ataturk Univ, KK Educ Fac, Dept Math, TR-25240 Erzurum, Turkey
[2] Ibrahim Cecen Univ Agri, Grad Sch Nat & Appl Sci, Agri, Turkey
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2014年
关键词
Hermite-Hadamard inequality; geometrically convex function; (alpha; m)-geometrically convex function; HERMITE-HADAMARD TYPE; INEQUALITIES;
D O I
10.1186/1029-242X-2014-180
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish several new inequalities for twice differentiable mappings that are connected with the celebrated Hermite-Hadamard integral inequality.
引用
收藏
页数:12
相关论文
共 12 条
[1]   NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX [J].
Alomari, M. ;
Darus, M. ;
Dragomir, S. S. .
TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (04) :353-359
[2]   CONVEX FUNCTIONS [J].
BECKENBACH, EF .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (05) :439-460
[3]  
Jensen J.L. W. V., 1905, Nyt Tidsskr. Math, V16, P49
[4]  
Mihesan V. G., 1993, SEM FUNCT EQ APPR CO
[5]  
Mitrinovic M. S., 1985, Aequationes Math., V28, P229, DOI DOI 10.1007/BF02189414
[6]  
Ozdemir ME, 2013, INT J MOD MATH SCI, V8, P27
[7]  
Ozdemir ME, ARXIV13127725V1
[8]  
Pecaric J. E., 1993, Classical and New Inequalities in Analysis
[9]  
Sarikaya M., 2012, Int. J. Open Problems Comput. Math., V5, P1
[10]   Hermite-Hadamard type inequalities for the m- and (α, m)-geometrically convex functions [J].
Xi, Bo-Yan ;
Bai, Rui-Fang ;
Qi, Feng .
AEQUATIONES MATHEMATICAE, 2012, 84 (03) :261-269