Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae

被引:183
作者
Neveux, N. [1 ]
Yuen, A. K. L. [2 ]
Jazrawi, C. [3 ]
Magnusson, M. [1 ]
Haynes, B. S. [3 ]
Masters, A. F. [2 ]
Montoya, A. [3 ]
Paul, N. A. [1 ]
Maschmeyer, T. [2 ]
de Nys, R. [1 ]
机构
[1] James Cook Univ, Ctr Macroalgal Resources & Biotechnol, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia
[2] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Algae; Seaweed; Hydrothermal liquefaction; Bioenergy; Cultivation; BIOFUEL PRODUCTION; MICROALGAE; BIOMASS; EXTRACTION; ALGAE; OIL;
D O I
10.1016/j.biortech.2013.12.083
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Six species of marine and freshwater green macroalgae were cultivated in outdoor tanks and subsequently converted to biocrude through hydrothermal liquefaction (HTL) in a batch reactor. The influence of the biochemical composition of biomass on biocrude yield and composition was assessed. The freshwater macroalgae Oedogonium afforded the highest biocrude yield of all six species at 26.2%, dry weight (dw). Derbesia (19.7% dw) produced the highest biocrude yield for the marine species followed by Ulva (18.7% dw). In contrast to significantly different yields across species, the biocrudes elemental profiles were remarkably similar with higher heating values of 33-34 MJ kg (1). Biocrude productivity was highest for marine Derbesia (2.4 g m (2) d (1)) and Ulva (2.1 g m (2) d (1)), and for freshwater Oedogonium (1.3 g m (2) d (1)). These species were therefore identified as suitable feedstocks for scale-up and further HTL studies based on biocrude productivity, as a function of biomass productivity and the yield of biomass conversion to biocrude. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:334 / 341
页数:8
相关论文
共 35 条
[1]   Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition [J].
Anastasakis, K. ;
Ross, A. B. .
BIORESOURCE TECHNOLOGY, 2011, 102 (07) :4876-4883
[2]  
Angell A.R., 2014, J PHYCOL
[3]   Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Carone, Maria ;
Colonna, Teresa ;
Fragale, Carlo .
ENVIRONMENTAL CHEMISTRY LETTERS, 2005, 3 (03) :136-139
[4]   Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects [J].
Barreiro, Diego Lopez ;
Prins, Wolter ;
Ronsse, Frederik ;
Brilman, Wim .
BIOMASS & BIOENERGY, 2013, 53 :113-127
[5]   Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process [J].
Biller, P. ;
Ross, A. B. ;
Skill, S. C. ;
Lea-Langton, A. ;
Balasundaram, B. ;
Hall, C. ;
Riley, R. ;
Llewellyn, C. A. .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2012, 1 (01) :70-76
[6]   Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content [J].
Biller, P. ;
Ross, A. B. .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :215-225
[7]   Algal biochar: effects and applications [J].
Bird, Michael I. ;
Wurster, Christopher M. ;
de Paula Silva, Pedro H. ;
Paul, Nicholas A. ;
de Nys, Rocky .
GLOBAL CHANGE BIOLOGY BIOENERGY, 2012, 4 (01) :61-69
[8]   Review of fast pyrolysis of biomass and product upgrading [J].
Bridgwater, A. V. .
BIOMASS & BIOENERGY, 2012, 38 :68-94
[9]   Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion [J].
Bruhn, Annette ;
Dahl, Jonas ;
Nielsen, Henrik Bangso ;
Nikolaisen, Lars ;
Rasmussen, Michael Bo ;
Markager, Stiig ;
Olesen, Birgit ;
Arias, Carlos ;
Jensen, Peter Daugbjerg .
BIORESOURCE TECHNOLOGY, 2011, 102 (03) :2595-2604
[10]   A unified correlation for estimating HHV of solid, liquid and gaseous fuels [J].
Channiwala, SA ;
Parikh, PP .
FUEL, 2002, 81 (08) :1051-1063