Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes

被引:162
作者
Nam, Kyung-Wan [1 ,2 ]
Lee, Chang-Wook [1 ]
Yang, Xiao-Qing [2 ]
Cho, Byung Won [3 ]
Yoon, Won-Sub [4 ]
Kim, Kwang-Bum [1 ]
机构
[1] Yonsei Univ, Div Mat Sci & Engn, Seoul 120749, South Korea
[2] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[3] Korea Inst Sci & Technol, Battery Res Ctr, Seoul 130650, South Korea
[4] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea
关键词
Supercapacitor; Nanocomposite; Organic electrolyte; Manganese oxide; Carbon nanotube; Specific energy; ELECTROCHEMICAL PROPERTIES; CAPACITIVE BEHAVIOR; LITHIUM; STORAGE; MNO2; PERFORMANCE; COMPOSITES; INTERCALATION; FILMS;
D O I
10.1016/j.jpowsour.2008.11.133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thin amorphous manganese oxide layers with a thickness of 3-5 nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure(denoted as MnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0 M KCl) and nonaqueous organic electrolyte (1.0 M LiClO4 in propylene carbonate). While both types of electrode show Pseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used. Use of the organic electrolyte results in a similar to 6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a three-dimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energy of supercapacitors. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:323 / 331
页数:9
相关论文
共 44 条
[1]   Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte [J].
Athouel, Laurence ;
Moser, Francois ;
Dugas, Romain ;
Crosnier, Olivier ;
Belanger, Daniel ;
Brousse, Thierry .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (18) :7270-7277
[2]   STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF THE PROTON GAMMA-MNO2 SYSTEM [J].
CHABRE, Y ;
PANNETIER, J .
PROGRESS IN SOLID STATE CHEMISTRY, 1995, 23 (01) :1-130
[3]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[4]   MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors [J].
Dong, XP ;
Shen, WH ;
Gu, JL ;
Xiong, LM ;
Zhu, YF ;
Li, Z ;
Shi, JL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6015-6019
[5]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[6]   Electrochemical storage of lithium multiwalled carbon nanotubes [J].
Frackowiak, E ;
Gautier, S ;
Gaucher, H ;
Bonnamy, S ;
Beguin, F .
CARBON, 1999, 37 (01) :61-69
[7]   Rapid discharge performance of composite electrode of hydrated sodium manganese oxide and acetylene black [J].
Hibino, M ;
Kawaoka, H ;
Zhou, HS ;
Honma, I .
ELECTROCHIMICA ACTA, 2004, 49 (28) :5209-5216
[8]   Two-step addition of acetylene black to hydrated sodium manganese oxide: its effect on the performance of rapid discharge cathode [J].
Hibino, M ;
Kawaoka, H ;
Zhou, HS ;
Honma, I .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :143-147
[9]   Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition [J].
Hu, CC ;
Tsou, TW .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (02) :105-109
[10]   Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition [J].
Hu, CC ;
Wang, CC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (08) :A1079-A1084