Production of poly-β-1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces

被引:18
|
作者
van Dissel, Dino [1 ]
Willemse, Joost [1 ]
Zacchetti, Boris [1 ]
Claessen, Dennis [1 ]
Pier, Gerald B. [2 ]
van Wezel, Gilles P. [1 ]
机构
[1] Leiden Univ, Inst Biol, Mol Biotechnol, Leiden, Netherlands
[2] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Infect Dis, Boston, MA USA
来源
MICROBIAL CELL | 2018年 / 5卷 / 06期
关键词
Streptomyces; hyphal aggregation; adhesion; PNAG; biofilm; PSEUDOMONAS-AERUGINOSA BIOFILMS; HUMAN MONOCLONAL-ANTIBODIES; POLY-N-ACETYLGLUCOSAMINE; ESCHERICHIA-COLI; MORPHOLOGICAL-DIFFERENTIATION; STAPHYLOCOCCUS-EPIDERMIDIS; INTERCELLULAR ADHESIN; BACILLUS-SUBTILIS; COELICOLOR A3(2); GENOME SEQUENCE;
D O I
10.15698/mic2018.06.635
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Streptomycetes are multicellular filamentous microorganisms, and major producers of industrial enzymes and bioactive compounds such as antibiotics and anticancer drugs. The mycelial lifestyle plays an important role in the productivity during industrial fermentations. The hyphae of liquid-grown streptomycetes can self-aggregate into pellets, which hampers their industrial exploitation. Here we show that the Mat complex, which is required for pellet formation, catalyzes the synthesis of extracellular poly-beta-1,6-N-acetylglucosamine (PNAG) in the model organisms Streptomyces coelicolor and Streptomyces lividans. Extracellular accumulation of PNAG allows Streptomyces to attach to hydrophilic surfaces, while attachment to hydrophobic surfaces requires a cellulase-degradable extracellular polymer (EPS) produced by CslA. Over-expression of matAB was sufficient to restore pellet formation to cslA null mutants of S. lividans. The two EPS systems together increase the robustness of mycelial pellets. These new insights allow better control of liquid-culture morphology of streptomycetes, which may be harnessed to improve growth and industrial exploitation of these highly versatile natural product and enzyme producers.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 11 条
  • [1] Characterization of the Poly-β-1,6-N-Acetylglucosamine Polysaccharide Component of Burkholderia Biofilms
    Yakandawala, Nandadeva
    Gawande, Purushottam V.
    LoVetri, Karen
    Cardona, Silvia T.
    Romeo, Tony
    Nitz, Mark
    Madhyastha, Srinivasa
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (23) : 8303 - 8309
  • [2] Molecular dynamics simulations of the interaction between OH radicals in plasma with poly-β-1–6-N-acetylglucosamine
    杨姝惠
    赵彤
    崔静娴
    韩智云
    邹亮
    王晓龙
    张远涛
    Plasma Science and Technology, 2020, 22 (12) : 68 - 78
  • [3] Molecular dynamics simulations of the interaction between OH radicals in plasma with poly-β-1–6-N-acetylglucosamine
    杨姝惠
    赵彤
    崔静娴
    韩智云
    邹亮
    王晓龙
    张远涛
    Plasma Science and Technology, 2020, (12) : 68 - 78
  • [4] Colistin-Resistant, Lipopolysaccharide-Deficient Acinetobacter baumannii Responds to Lipopolysaccharide Loss through Increased Expression of Genes Involved in the Synthesis and Transport of Lipoproteins, Phospholipids, and Poly-β-1,6-N-Acetylglucosamine
    Henry, Rebekah
    Vithanage, Nuwan
    Harrison, Paul
    Seemann, Torsten
    Coutts, Scott
    Moffatt, Jennifer H.
    Nation, Roger L.
    Li, Jian
    Harper, Marina
    Adler, Ben
    Boyce, John D.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (01) : 59 - 69
  • [5] Anionic amino acids support hydrolysis of poly-β-(1,6)-N-acetylglucosamine exopolysaccharides by the biofilm dispersing glycosidase Dispersin B
    Breslawec A.P.
    Wang S.
    Li C.
    Poulin M.B.
    Journal of Biological Chemistry, 2021, 296
  • [6] Anionic amino acids support hydrolysis of poly-β-(1,6)-N-acetylglucosamine exopolysaccharides by the biofilm dispersing glycosidase Dispersin B
    Breslawec, Alexandra P.
    Wang, Shaochi
    Li, Crystal
    Poulin, Myles B.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 296
  • [7] The Protein BpsB Is a Poly-β-1,6-N-acetyl-D-glucosamine Deacetylase Required for Biofilm Formation in Bordetella bronchiseptica
    Little, Dustin J.
    Milek, Sonja
    Bamford, Natalie C.
    Ganguly, Tridib
    DiFrancesco, Benjamin R.
    Nitz, Mark
    Deora, Rajendar
    Howell, P. Lynne
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (37) : 22827 - 22840
  • [8] PgaB orthologues contain a glycoside hydrolase domain that cleaves deacetylated poly-β(1,6)-N-acetylglucosamine and can disrupt bacterial biofilms
    Little, Dustin J.
    Pfoh, Roland
    Le Mauff, Francois
    Bamford, Natalie C.
    Notte, Christina
    Baker, Perrin
    Guragain, Manita
    Robinson, Howard
    Pier, Gerald B.
    Nitz, Mark
    Deora, Rajendar
    Sheppard, Donald C.
    Howell, P. Lynne
    PLOS PATHOGENS, 2018, 14 (04)
  • [9] The pgaABCD Locus of Acinetobacter baumannii Encodes the Production of Poly-β-1-6-N-Acetylglucosamine, Which Is Critical for Biofilm Formation
    Choi, Alexis H. K.
    Slamti, Leyla
    Avci, Fikri Y.
    Pier, Gerald B.
    Maira-Litran, Tomas
    JOURNAL OF BACTERIOLOGY, 2009, 191 (19) : 5953 - 5963
  • [10] The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamine
    Goller, Carlos
    Wang, Xin
    Itoh, Yoshikane
    Romeo, Tony
    JOURNAL OF BACTERIOLOGY, 2006, 188 (23) : 8022 - 8032