1013 Conformal Doping for Highly Efficient Thermal Neutron Detectors

被引:5
作者
Krishnan, Siddartha S. Nandagopala [1 ]
Avila-Avendano, Carlos [1 ]
Shamsi, Zeshaan [1 ]
Caraveo-Frescas, Jesus A. [1 ]
Quevedo-Lopez, Manuel A. [1 ]
机构
[1] Univ Texas Dallas, Mat Sci & Engn, Richardson, TX 75080 USA
关键词
neutron detection; B-10; doping; Monte-Carlo simulations; micro-structured detection; solid-state neutron sensor; DESIGN;
D O I
10.1021/acssensors.0c01013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper reports a simple and novel conformal doping strategy for microstructured silicon diodes using enriched B-10 for sidewall doping while enabling enhanced neutron sensitivity. Monte-Carlo nuclear particle (MCNP) code simulations were initially used to calculate the neutron detection efficiency in the microstructured diodes as a function of geometry and pitch. A high-temperature anneal in 10B-filled diodes results in a conformal silicon p+ layer along the side walls of the trenches in the diodes. This results in large neutron detection areas and enhanced neutron detection efficiency when compared with planar detectors. With the method discussed here, a thermal neutron detection of similar to 21% efficiency is achieved, which is significantly higher than the efficiency achieved in planar detectors (similar to 3.5%). The higher efficiency is enabled by the 10B acting as a source for conformal doping in the trenches, resulting in lower leakage current while also enabling neutron sensitivity in the microstructured diodes.
引用
收藏
页码:2852 / 2857
页数:6
相关论文
共 28 条
[1]  
Ahmed S. N., 2015, PHYS ENG RAD DETECTI, P137
[2]   Enhanced variant designs and characteristics of the microstructured solid-state neutron detector [J].
Bellinger, S. L. ;
Fronka, R. G. ;
McNeil, W. J. ;
Sobering, T. J. ;
McGregor, D. S. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 652 (01) :387-391
[3]   Characteristics of the Stacked Microstructured Solid-State Neutron Detector [J].
Bellinger, S. L. ;
Fronk, R. G. ;
McNeil, W. J. ;
Shultis, J. K. ;
Sobering, T. J. ;
McGregor, D. S. .
HARD X-RAY, GAMMA-RAY, AND NEUTRON DETECTOR PHYSICS XII, 2010, 7805
[4]   The physics of solid-state neutron detector materials and geometries [J].
Caruso, A. N. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (44)
[5]   Self-powered micro-structured solid state neutron detector with very low leakage current and high efficiency [J].
Dahal, R. ;
Huang, K. C. ;
Clinton, J. ;
LiCausi, N. ;
Lu, J. -Q. ;
Danon, Y. ;
Bhat, I. .
APPLIED PHYSICS LETTERS, 2012, 100 (24)
[6]  
Fronk R. G., 2011, THESIS
[7]   Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) [J].
Fronk, Ryan G. ;
Bellinger, Steven L. ;
Henson, Luke C. ;
Ochs, Taylor R. ;
Smith, Colten T. ;
Shultis, J. Kenneth ;
McGregor, Douglas S. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 804 :201-206
[8]  
Knoll G., 2000, RAD DETECTION MEASUR, P365
[9]   Neutron detection alternatives to 3He for national security applications [J].
Kouzes, Richard T. ;
Ely, James H. ;
Erikson, Luke E. ;
Kernan, Warnick J. ;
Lintereur, Azaree T. ;
Siciliano, Edward R. ;
Stephens, Daniel L. ;
Stromswold, David C. ;
Van Ginhoven, Renee M. ;
Woodring, Mitchell L. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 623 (03) :1035-1045
[10]   Microstructured semiconductor neutron detectors [J].
McGregor, D. S. ;
McNeil, W. J. ;
Bellinger, S. L. ;
Unruh, T. C. ;
Shultis, J. K. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 608 (01) :125-131