Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet

被引:61
|
作者
Martins, Amanda R. [1 ]
Crisma, Amanda R. [1 ]
Masi, Laureane N. [2 ]
Amaral, Catia L. [1 ,3 ]
Marzuca-Nassr, Gabriel N. [1 ,4 ]
Bomfim, Lucas H. M. [5 ]
Teodoro, Bruno G. [6 ]
Queiroz, Andre L. [6 ]
Serdan, Tamires D. A. [2 ]
Torres, Rosangela P. [7 ]
Mancini-Filho, Jorge [7 ]
Rodrigues, Alice C. [1 ]
Alba-Loureiro, Tatiana C. [1 ]
Pithon-Curi, Tania C. [2 ]
Gorjao, Renata [2 ]
Silveira, Leonardo R. [5 ]
Curi, Rui [1 ,2 ]
Newsholme, Philip [8 ]
Hirabara, Sandro M. [1 ,2 ]
机构
[1] Univ Sao Paulo, Inst Biomed Sci, Sao Paulo, Brazil
[2] Cruzeiro do Sul Univ, Inst Phys Act Sci & Sports, Sao Paulo, Brazil
[3] State Univ Goias, Exact & Technol Sci, Anapolis, Go, Brazil
[4] Univ La Frontera, Fac Med, Dept Internal Med, Temuco, Chile
[5] Univ Estadual Campinas, Inst Biol, Campinas, SP, Brazil
[6] Univ Sao Paulo, Dept Biochem & Immunol, Fac Med, Ribeirao Preto, Brazil
[7] Univ Sao Paulo, Fac Pharmaceut Sci, Sao Paulo, Brazil
[8] Curtin Univ, Curtin Hlth Innovat Res Inst, Sch Biomed Sci, Perth, WA 6152, Australia
来源
基金
巴西圣保罗研究基金会;
关键词
Insulin resistance; Fish oil; Skeletal muscle; Mitochondrial function; Obesity; ACTIVATED PROTEIN-KINASE; ADIPOSE-TISSUE INFLAMMATION; OXIDATIVE STRESS; SOLEUS MUSCLE; RECEPTOR-ALPHA; GLYCOGEN-SYNTHESIS; LIPID-METABOLISM; DIABETIC MICE; LINOLEIC-ACID; KNOCKOUT MICE;
D O I
10.1016/j.jnutbio.2017.11.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to improve insulin sensitivity and glucose homeostasis in animal models of insulin resistance, but the involved mechanisms still remain unresolved. In this study, we evaluated the effects of fish oil (FO), a source of n-3 PUFAs, on obesity, insulin resistance and muscle mitochondrial function in mice fed a high-fat diet (HFD). C57B1/6 male mice, 8 weeks old, were divided into four groups: control diet (C), high-fat diet (H), C+FO (CFO) and H+FO (HFO). FO was administered by oral gavage (2 g/kg b.w.), three times a week, starting 4 weeks before diet administration until the end of the experimental protocol. HFD-induced obesity and insulin resistance associated with impaired skeletal muscle mitochondrial function, as indicated by decreased oxygen consumption, tricarboxylic acid cycle intermediate (TCAi) contents (citrate, alpha-ketoglutarate, malate and oxaloacetate), oxidative phosphorylation protein content and mitochondrial biogenesis. These effects were associated with elevated reactive oxygen species production, decreased PGC1-a transcription and reduced Akt phosphorylation. The changes induced by the HFD were partially attenuated by FO, which decreased obesity and insulin resistance and increased mitochondria] function. In the H group, FO supplementation also improved oxygen consumption; increased TCAi content, and Akt and AMPK phosphorylation; and up-regulated mRNA expression of Gpat1, Pepck, catalase and mitochondrial proteins (Pgc1 alpha, Ppar alpha, Cpt1 and Ucp3). These results suggest that dietary FO attenuates the deleterious effects of the HFD (obesity and insulin resistance) by improving skeletal muscle mitochondrial function. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 88
页数:13
相关论文
共 50 条
  • [21] Acidic Activated Charcoal Prevents Obesity and Insulin Resistance in High-Fat Diet-Fed Mice
    Zhang, Xuguang
    Diao, Pan
    Yokoyama, Hiroaki
    Inoue, Yoshiki
    Tanabe, Kazuhiro
    Wang, Xiaojing
    Hayashi, Chihiro
    Yokoyama, Tomoki
    Zhang, Zhe
    Hu, Xiao
    Nakajima, Takero
    Kimura, Takefumi
    Nakayama, Jun
    Nakamuta, Makoto
    Tanaka, Naoki
    FRONTIERS IN NUTRITION, 2022, 9
  • [22] Attenuation of obesity-induced inflammatory responses and insulin resistance in TR2 knockout mice fed a high-fat diet
    Yu, Rina
    Kim, C-S
    Kawada, T.
    Kwon, B-S
    INFLAMMATION RESEARCH, 2007, 56 : S431 - S431
  • [23] Zyflamend Supplementation Alleviates High-Fat Diet-Induced Obesity and Impairment of Skeletal Muscle Insulin Sensitivity
    Bettaieb, Ahmed
    Hubbard, Katelin
    Puckett, Dexter
    Dowker, Presley
    Alani, Dina
    Chahed, Samah
    Alquraishi, Mohammed
    Whelan, Lay
    FASEB JOURNAL, 2021, 35
  • [24] Insulin-dependent mitochondrial Ca2+ uptake in skeletal muscle is quickly disrupted in high-fat diet fed mice
    Contreras-Ferrat, Ariel
    Llanos, Paola
    Jaimovich, Enrique
    FASEB JOURNAL, 2014, 28 (01):
  • [25] Effects of Ecklonia stolonifera extract on the obesity and skeletal muscle regeneration in high-fat diet-fed mice
    Jin, Heegu
    Oh, Hyun-Ji
    Kim, Junghee
    Lee, Kang-Pyo
    Han, Xionggao
    Lee, Ok-Hwan
    Lee, Boo-Yong
    JOURNAL OF FUNCTIONAL FOODS, 2021, 82
  • [26] Relaxin Treatment Reverses Insulin Resistance in Mice Fed a High-Fat Diet
    Bonner, Jeffrey S.
    Lantier, Louise
    Hocking, Kyle M.
    Kang, Li
    Owolabi, Mark
    James, Freyja D.
    Bracy, Deanna P.
    Brophy, Colleen M.
    Wasserman, David H.
    DIABETES, 2013, 62 (09) : 3251 - 3260
  • [27] Nitro-aspirin improves high-fat diet induced insulin resistance in mice by attenuation of iNOS induction in skeletal muscle tissue
    Jayet, PY
    Dessen, P
    Thalmann, S
    Schwab, M
    Vollerweider, P
    Sartori, C
    Scherrer, U
    FASEB JOURNAL, 2006, 20 (05): : A1173 - A1173
  • [28] Aerobic Exercise Prevents Chronic Inflammation and Insulin Resistance in Skeletal Muscle of High-Fat Diet Mice
    Li, Nan
    Shi, Haiyan
    Guo, Qiaofeng
    Gan, Yanming
    Zhang, Yuhang
    Jia, Jiajie
    Zhang, Liang
    Zhou, Yue
    NUTRIENTS, 2022, 14 (18)
  • [29] d-Allulose Ameliorates Skeletal Muscle Insulin Resistance in High-Fat Diet-Fed Rats
    Gou, Yang
    Liu, Bingyang
    Cheng, Mengyao
    Yamada, Takako
    Iida, Tetsuo
    Wang, Sixian
    Banno, Ryoichi
    Koike, Teruhiko
    MOLECULES, 2021, 26 (20):
  • [30] Early and Chronic Exposure to Penicillin Increases Obesity and Insulin Resistance in High-Fat Diet-Fed Mice
    Noh, Hye Lim
    Suk, Sujin
    Friedline, Randall H.
    Hu, Xiaodi
    Tran, Duy A.
    Tauer, Lauren A.
    Choi, Jungeun
    Ko, Min-Ji
    Kim, Brandon
    Surapaneni, Tanuj
    Blaser, Martin J.
    Kim, Jason K.
    DIABETES, 2019, 68