On detour homogeneous digraphs

被引:0
作者
van Aardt, Susan [1 ]
Bullock, Frank [1 ]
Gorska, Joanna [2 ]
Skupien, Zdzislaw [2 ]
机构
[1] Univ S Africa, Dept Math Sci, ZA-0001 Pretoria, South Africa
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
基金
新加坡国家研究基金会;
关键词
Digraph; Oriented graph; Detour homogeneous; Homogeneously traceable; Traceable; GRAPHS;
D O I
10.1016/j.disc.2008.10.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If every vertex of a graph is an endvertex of a hamiltonian path, then the graph is called homogeneously traceable. If we require each vertex of a graph to be an endvertex of a longest path (not necessarily a hamiltonian path), then we call the graph a detour homogeneous graph. The concept of a homogeneously traceable graph was extended to digraphs by Bermond, Simoes-Pereira, and C.M. Zamfirescu. Skupien introduced different classes of such digraphs. In this paper we discuss the extension of the concept of a detour homogeneous graph to digraphs. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:6415 / 6424
页数:10
相关论文
共 15 条
  • [1] Bang-Jensen J., 2002, DIGRAPHS THEORY ALGO, P5
  • [2] Nontraceable detour graphs
    Bullock, Frank
    Frick, Marietjie
    Semanisin, Gabriel
    Vlacuha, Robert
    [J]. DISCRETE MATHEMATICS, 2007, 307 (7-8) : 839 - 853
  • [3] CHARTRAND G, 1979, ANN NY ACAD SCI, V319, P130
  • [4] Fouquet J. L., 1978, Cahiers du Centre d'Etudes de Recherche Operationelle, V20, P171
  • [5] FOUQUET JL, 1978, C INTERNAT CNRS, V260, P149
  • [6] GROTSCHEL M, 1980, OPERATIONS RES VERFA, V36, P99
  • [7] Lick D.R., 1981, THEORY APPL GRAPHS, P517
  • [8] MESZKA M, 2006, COMMUNICATION
  • [9] Skupien, 1984, DEMONSTRATIO MATH, V17, P1051, DOI 10.1515/dema-1984-0424
  • [10] Skupien, 1980, ANN DISCRETE MATH, V8, P185, DOI DOI 10.1016/S0167-5060(08)70871-9