A stabilized mixed finite element method for Darcy flow

被引:226
作者
Masud, A [1 ]
Hughes, TJR
机构
[1] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA
[2] Stanford Univ, Div Mech & Computat, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家航空航天局;
关键词
D O I
10.1016/S0045-7825(02)00371-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop new stabilized mixed finite element methods for Darcy flow. Stability and an a priori error estimate in the "stability norm" are established. A wide variety of convergent finite elements present themselves, unlike the classical Galerkin formulation which requires highly specialized elements. An interesting feature of the formulation is that there are no mesh-dependent parameters. Numerical tests confirm the theoretical results. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:4341 / 4370
页数:30
相关论文
共 52 条
[1]  
[Anonymous], NOTES NUMERICAL FLUI
[2]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[3]   A MIXED FINITE ELEMENT-FINITE VOLUME FORMULATION OF THE BLACK-OIL MODEL [J].
Bergamaschi, Luca ;
Mantica, Stefano ;
Manzini, Gianmarco .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (03) :970-997
[4]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[5]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[6]   CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS [J].
BREZZI, F ;
RUSSO, A .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (04) :571-587
[7]   b=integral g [J].
Brezzi, F ;
Franca, LP ;
Hughes, TJR ;
Russo, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 145 (3-4) :329-339
[8]   MIXED FINITE-ELEMENTS FOR 2ND-ORDER ELLIPTIC PROBLEMS IN 3 VARIABLES [J].
BREZZI, F ;
DOUGLAS, J ;
DURAN, R ;
FORTIN, M .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :237-250
[9]  
BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
[10]  
BREZZI F, 1991, SPRIGNER SERIES COMP, V15