Spectral characteristics of the antiferromagnetic spin-1/2 Heisenberg model on the square lattice in a magnetic field

被引:2
作者
Savchenkov, P. S. [1 ,2 ]
Barabanov, A. F. [3 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[2] Natl Res Ctr, Kurchatov Inst, Moscow 123182, Russia
[3] Russian Acad Sci, Vereshchagin Inst High Pressure Phys, Moscow, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
Two-dimensional quantum antiferromagnet; Spin-1/2 Heisenberg square-lattice model; Rotation-invariant Green's function method; WAVE;
D O I
10.1016/j.jmmm.2020.167505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We predict that spin-waves in an ordered square quantum antiferromagnet in a magnetic field (h) perpendicular to antiferromagnetic plane may demonstrate three modes of spin excitations. Starting from the self-consistent rotation-invariant Green's function method, a new mean-field theory is constructed for h not equal 0. The method preserves the translational and the axial symmetries, and provides exact fulfillment of the single-site constraint for each of the three modes. We examine the dynamical structure factors S-alpha alpha(k, omega),alpha(beta) = x, y, z. It is shown, that the introduction of h leads to the hybridization of two degenerate spin modes due to the appearance of a non-diagonal on alpha, beta spin-spin Green's functions. The comparison of the theory with the exact diagonalization study and with results on inelastic neutron scattering experiments is discussed at T = 0. We discuss also the correspondence of the present theory to the existing theories, which allow only two spin excitations modes for the total S(k, omega).
引用
收藏
页数:6
相关论文
共 32 条
[1]   Frustrated quantum two-dimensional J 1-J 2-J 3 antiferromagnet in a spherically symmetric self-consistent approach [J].
Barabanov, A. F. ;
Mikheenkov, A. V. ;
Shvartsberg, A. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 168 (03) :1192-1215
[2]   SPHERICAL SYMMETRICAL SPIN-WAVE THEORY OF HEISENBERG-MODEL [J].
BARABANOV, AF ;
STARYKH, OA .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (02) :704-708
[3]   Frustrated spin-1/2 Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1-J2-J1⊥ model [J].
Bishop, R. F. ;
Li, P. H. Y. ;
Goetze, O. ;
Richter, J. .
PHYSICAL REVIEW B, 2019, 100 (02)
[4]   The spin-half XXZ antiferromagnet on the square lattice revisited: A high-order coupled cluster treatment [J].
Bishop, R. F. ;
Li, P. H. Y. ;
Zinke, R. ;
Darradi, R. ;
Richter, J. ;
Farnell, D. J. J. ;
Schulenburg, J. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 428 :178-188
[5]   GENERAL THEORY OF SPIN-WAVE INTERACTIONS [J].
DYSON, FJ .
PHYSICAL REVIEW, 1956, 102 (05) :1217-1230
[6]   Dynamical structure factor of quasi-two-dimensional antiferromagnet in high fields [J].
Fuhrman, W. T. ;
Mourigal, M. ;
Zhitomirsky, M. E. ;
Chernyshev, A. L. .
PHYSICAL REVIEW B, 2012, 85 (18)
[7]   Field dependence of the intrinsic domain magnetization of a ferromagnet [J].
Holstein, T ;
Primakoff, H .
PHYSICAL REVIEW, 1940, 58 (12) :1098-1113
[8]  
Hong GH, 2017, J INT COMMER ECON PO, V8, DOI 10.1142/S1793993317500016
[9]   Two-dimensional Heisenberg antiferromagnet in a transverse field [J].
Jensen, PJ ;
Bennemann, KH ;
Morr, DK ;
Dreyssé, H .
PHYSICAL REVIEW B, 2006, 73 (14)
[10]   GREENS-FUNCTION FORMALISM OF ONE-DIMENSIONAL HEISENBERG SPIN SYSTEM [J].
KONDO, J ;
YAMAJI, K .
PROGRESS OF THEORETICAL PHYSICS, 1972, 47 (03) :807-&