Finite distributive lattices and doubly irreducible elements

被引:6
作者
Berman, J
Bordalo, G
机构
[1] UNIV ILLINOIS,DEPT MATH STAT & COMP SCI,CHICAGO,IL 60607
[2] UNIV LISBON,DEPT MATEMAT,P-1699 LISBON,PORTUGAL
关键词
D O I
10.1016/S0012-365X(97)81832-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite ordered set G let D(G) denote the family of all distributive lattices L such that G both generates L and is the set of doubly irreducible elements of L. We provide a characterization for membership in D(G), and by means of this characterization define a natural order relation on D(G). We show that this order is a boolean lattice and we describe the maximal and minimal elements in this lattice. The maximal element is familiar: the free distributive lattice freely generated by the ordered set G. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:237 / 243
页数:7
相关论文
共 5 条
[1]  
[Anonymous], 1978, GEN LATTICE THEORY
[2]  
Davey B., 1990, INTRO LATTICES ORDER
[3]   BIGENERATION IN COMPLETE LATTICES AND PRINCIPAL SEPARATION IN ORDERED SETS [J].
ERNE, M .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (02) :197-221
[4]   UNE CONSTRUCTION DU RETICULE DISTRIBUTIF LIBRE SUR UN ENSEMBLE ORDONNE [J].
MONTEIRO, L .
COLLOQUIUM MATHEMATICUM, 1967, 17 (01) :23-&
[5]  
MONTJARDET B, 1988, DISCRETE MATH, V73, P163