NONLOCAL SPATIALLY INHOMOGENEOUS HAMILTON-JACOBI EQUATION WITH UNUSUAL FREE BOUNDARY

被引:6
作者
Giga, Yoshikazu [1 ]
Gorka, Przemyslaw [2 ,3 ]
Rybka, Piotr [4 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
[2] Univ Talca, Inst Matemat & Fis, Talca, Chile
[3] Warsaw Univ Technol, Dept Math & Informat Sci, PL-00661 Warsaw, Poland
[4] Univ Warsaw, Inst Appl Math & Mech, PL-07097 Warsaw, Poland
基金
日本学术振兴会;
关键词
driven curvature flow; singular energies; Hamilton-Jacobi equation; free boundary; discontinuous Hamiltonian; comparison principle; VISCOSITY SOLUTIONS; CRYSTALLINE CURVATURE; DRIVEN; FACETS;
D O I
10.3934/dcds.2010.26.493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the weighted mean curvature flow in the plane with a driving term. For certain anisotropy functions this evolution problem degenerates to a first order Hamilton-Jacobi equation with a free boundary. The resulting problem may be written as a Hamilton-Jacobi equation with a spatially non-local and discontinuous Hamiltonian. We prove existence and uniqueness of solutions. On the way we show a comparison principle and a stability theorem for viscosity solutions.
引用
收藏
页码:493 / 519
页数:27
相关论文
共 28 条
[1]  
[Anonymous], DIFFERENTIAL INTEGRA
[2]  
[Anonymous], WORLD C NONL AN 92
[3]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[4]  
BARLES G, 1987, ESAIM-MATH MODEL NUM, V21, P557
[5]  
Barles G., 1994, Mathematiques & Applications (Berlin) Mathematics & Applications, V17
[6]  
Bellettini G, 2001, ARCH RATION MECH AN, V157, P193, DOI 10.1007/s002050100127
[7]  
Bellettini G., 2000, Adv. Math. Sci. Appl, V10, P467
[8]  
Bellettini G., 2001, Interfaces Free Bound., V3, P415, DOI [10.4171/IFB/47, DOI 10.4171/IFB/47]
[9]   Time-dependent measurable Hamilton-Jacobi equations [J].
Camilli, F ;
Siconolfi, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) :813-847
[10]   A characterization of convex calibrable sets in RN with respect to anisotropic norms [J].
Caselles, V. ;
Chambolle, A. ;
Moll, S. ;
Novaga, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (04) :803-832