Inferential, robust non-negative matrix factorization analysis of microarray data

被引:46
|
作者
Fogel, Paul
Young, S. Stanley
Hawkins, Douglas M.
Ledirac, Nathalie
机构
[1] Natl Inst Stat Sci, Res Triangle Pk, NC 27709 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[3] INRA, Ctr Rech, Lab Toxicol Cellulaire & Mol, F-06903 Sophia Antipolis, France
关键词
D O I
10.1093/bioinformatics/btl550
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Modern methods such as microarrays, proteomics and metabolomics often produce datasets where there are many more predictor variables than observations. Research in these areas is often exploratory; even so, there is interest in statistical methods that accurately point to effects that are likely to replicate. Correlations among predictors are used to improve the statistical analysis. We exploit two ideas: non-negative matrix factorization methods that create ordered sets of predictors; and statistical testing within ordered sets which is done sequentially, removing the need for correction for multiple testing within the set. Results: Simulations and theory point to increased statistical power. Computational algorithms are described in detail. The analysis and biological interpretation of a real dataset are given. In addition to the increased power, the benefit of our method is that the organized gene lists are likely to lead better understanding of the biology.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 50 条
  • [31] Non-negative matrix factorization with α-divergence
    Cichocki, Andrzej
    Lee, Hyekyoung
    Kim, Yong-Deok
    Choi, Seungjin
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1433 - 1440
  • [32] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [33] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511
  • [34] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [35] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48
  • [36] Non-negative Matrix Factorization on Manifold
    Cai, Deng
    He, Xiaofei
    Wu, Xiaoyun
    Han, Jiawei
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 63 - +
  • [37] Bayesian Non-negative Matrix Factorization
    Schmidt, Mikkel N.
    Winther, Ole
    Hansen, Lars Kai
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 540 - +
  • [38] Non-negative Matrix Factorization on GPU
    Platos, Jan
    Gajdos, Petr
    Kroemer, Pavel
    Snasel, Vaclav
    NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 21 - 30
  • [39] On affine non-negative matrix factorization
    Laurberg, Hans
    Hansen, Lars Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 653 - +
  • [40] Robust automated graph regularized discriminative non-negative matrix factorization
    Long, Xianzhong
    Xiong, Jian
    Chen, Lei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 14867 - 14886