Mixtures of correlated bosons and fermions: Dynamical mean-field theory for normal and condensed phases

被引:12
作者
Byczuk, Krzysztof [1 ,2 ]
Vollhardt, Dieter [2 ]
机构
[1] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
[2] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany
关键词
Correlated lattice fermions and bosons; dynamical mean-field theory; OPTICAL LATTICES; DIMENSIONS; LOCALIZATION; SYSTEMS; PHYSICS; GASES;
D O I
10.1002/andp.200910362
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a dynamical mean-field theory for mixtures of interacting bosons and fermions on a lattice (BF-DMFT). The BF-DMFT is a comprehensive, thermodynamically consistent framework for the theoretical investigation of Bose-Fermi mixtures and is applicable for arbitrary values of the coupling parameters and temperatures. It becomes exact in the limit of high spatial dimensions d or coordination number Z of the lattice. In particular, the BF-DMFT treats normal and condensed bosons on equal footing and thus includes the effects caused by their dynamic coupling. Using the BF-DMFT we investigate two different interaction models of correlated lattice bosons and fermions, one where all particles are spinless (model I) and one where fermions carry a spin one-half (model II). In model I the local, repulsive interaction between bosons and fermions can give rise to an attractive effective interaction between the bosons. In model II it can also lead to an attraction between the fermions. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:622 / 633
页数:12
相关论文
共 56 条
[1]  
Abrikosov A. A., 1963, Methods of Quantum Field Theory in Statistical Physics
[2]   Critical Behavior at the Mott-Anderson Transition: A Typical-Medium Theory Perspective [J].
Aguiar, M. C. O. ;
Dobrosavljevic, V. ;
Abrahams, E. ;
Kotliar, G. .
PHYSICAL REVIEW LETTERS, 2009, 102 (15)
[3]   Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures [J].
Ahufinger, V ;
Sanchez-Palencia, L ;
Kantian, A ;
Sanpera, A ;
Lewenstein, M .
PHYSICAL REVIEW A, 2005, 72 (06)
[4]   Quantum field theory of dilute homogeneous Bose-Fermi mixtures at zero temperature: General formalism and beyond mean-field corrections [J].
Albus, AP ;
Gardiner, SA ;
Illuminati, F ;
Wilkens, M .
PHYSICAL REVIEW A, 2002, 65 (05) :15
[5]  
Aschcroft N., 1976, Solid State Physics
[6]   Role of Interactions in 87Rb-40K Bose-Fermi Mixtures in a 3D Optical Lattice [J].
Best, Th. ;
Will, S. ;
Schneider, U. ;
Hackermueller, L. ;
van Oosten, D. ;
Bloch, I. ;
Luehmann, D. -S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (03)
[7]  
BIJLSMA MJ, 2000, PHYS REV A, V61
[8]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[9]   Phase separation of atomic Bose-Fermi mixtures in an optical lattice -: art. no. 063603 [J].
Büchler, HP ;
Blatter, G .
PHYSICAL REVIEW A, 2004, 69 (06) :063603-1
[10]   Supersolid versus phase separation in atomic Bose-Fermi mixtures -: art. no. 130404 [J].
Büchler, HP ;
Blatter, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (13)