机构:
Ivan Franko Natl Univ Lviv, Dept Mech & Math, Univ Ska 1, UA-79000 Lvov, UkraineIvan Franko Natl Univ Lviv, Dept Mech & Math, Univ Ska 1, UA-79000 Lvov, Ukraine
Gutik, Oleg
[1
]
Repovs, Dusan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, SloveniaIvan Franko Natl Univ Lviv, Dept Mech & Math, Univ Ska 1, UA-79000 Lvov, Ukraine
Repovs, Dusan
[2
,3
]
机构:
[1] Ivan Franko Natl Univ Lviv, Dept Mech & Math, Univ Ska 1, UA-79000 Lvov, Ukraine
[2] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
bicyclic semigroup;
semigroup of bijective partial transformations;
congruence;
symmetric group;
group congruence;
semidirect product;
AUTOMORPHISMS;
D O I:
10.1515/ms-2015-0067
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the semigroup I-lambda(cf) of injective partial cofinite selfmaps of an infinite cardinal.. We show that I-lambda(cf) is a bisimple inverse semigroup and each chain of idempotents in I-lambda(cf) is contained in a bicyclic subsemigroup of I-lambda(cf), we describe the Green relations on I-lambda(cf) and we prove that every non-trivial congruence on I-lambda(cf) is a group congruence. Also, we describe the structure of the quotient semigroup I-lambda(cf)/sigma, where s is the least group congruence on I-lambda(cf). (C) 2015 Mathematical Institute Slovak Academy of Sciences