Minimal co-volume hyperbolic lattices, I: The spherical points of a Kleinian group

被引:25
作者
Gehring, Frederick W. [1 ]
Martin, Gaven J. [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand
基金
美国国家科学基金会;
关键词
MARGULIS CONSTANT; 3-MANIFOLDS; 3-FOLDS; PACKING;
D O I
10.4007/annals.2009.170.123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the two minimal co-volume lattices of the isometry group of hyperbolic 3-space that contain a finite spherical triangle group. These two groups are arithmetic and are in fact the two minimal co-volume lattices. Our results here represent the key step in establishing this fact, thereby solving a problem posed by Siegel in 1945. As a consequence we obtain sharp bounds on the order of the symmetry group of a hyperbolic 3-manifold in terms of its volume, analogous to the Hurwitz 84g - 84 theorem of 1892. The finite spherical subgroups of a Kleinian group give rise to the vertices of the singular graph in the quotient orbifold. We identify the small values of the discrete spectrum of hyperbolic distances between these vertices and show these small values give rise to arithmetic lattices. Once vertices are sufficiently separated, one obtains volume bounds by studying equivariant sets.
引用
收藏
页码:123 / 161
页数:39
相关论文
共 31 条
  • [1] Lower bounds on volumes of hyperbolic Haken 3-manifolds
    Agol, Ian
    Storm, Peter A.
    Thurston, William P.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (04) : 1053 - 1077
  • [2] [Anonymous], 1981, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
  • [3] [Anonymous], 1968, Inst. Hautes Etudes Sci. Publ. Math.
  • [4] Beardon A.F., 1983, GRAD TEXTS MATH, V91
  • [5] PACKING OF SPHERES IN SPACES OF CONSTANT CURVATURE
    BOROCZKY, K
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 32 (3-4): : 243 - 261
  • [6] CAO C, 1994, NZ J MATH, V23, P111
  • [7] THE SMALLEST ARITHMETIC HYPERBOLIC 3-ORBIFOLD
    CHINBURG, T
    FRIEDMAN, E
    [J]. INVENTIONES MATHEMATICAE, 1986, 86 (03) : 507 - 527
  • [8] CONDER M, 2006, NZ J MATH, V35
  • [9] DEREVNIN DA, 1988, SOV MATH DOKL, V37, P614
  • [10] FENCHEL W, 1989, GRUYTER STUDIES MATH, V11