New exact solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation

被引:19
作者
Wang, Yang [1 ]
Wei, Long [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Math, Hangzhou 310018, Zhejiang, Peoples R China
关键词
(2+1)-Dimensional KD equation; Travelling wave solutions; Complexitons; NONLINEAR EVOLUTION-EQUATIONS; TRAVELING-WAVE SOLUTIONS; TANH METHOD; COMPLEXITON SOLUTIONS; SYMBOLIC-COMPUTATION; MATHEMATICAL PHYSICS; BOUSSINESQ EQUATION; SOLITONS SOLUTIONS; TRANSFORMATION; EXPANSION;
D O I
10.1016/j.cnsns.2009.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the extended tanh method, the sech-csch ansatz, the Hirota's bilinear formalism combined with the simplified Hereman form and the Darboux transformation method are applied to determine the traveling wave solutions and other kinds of exact solutions for the (2 + 1)-dimensional Konopelchenko-Dubrovsky equation and abundant new soliton solutions, kink solutions, periodic wave solutions and complexiton solutions are formally derived. The work confirms the significant features of the employed methods and shows the variety of the obtained solutions. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 224
页数:9
相关论文
共 37 条
[1]   Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method [J].
Abdou, M. A. .
NONLINEAR DYNAMICS, 2008, 52 (1-2) :1-9
[2]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[3]   Darboux transformations via Painleve analysis [J].
Estevez, PG ;
Gordoa, PR .
INVERSE PROBLEMS, 1997, 13 (04) :939-957
[4]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[5]  
Gu C., 2004, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry
[6]   Symbolic methods to construct exact solutions of nonlinear partial differential equations [J].
Hereman, W ;
Nuseir, A .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (01) :13-27
[7]  
Hirota R., 2004, The Direct Method in Soliton Theory
[8]   Nonsingular positon and complexiton solutions for the coupled KdV system [J].
Hu, HC ;
Tong, B ;
Lou, SY .
PHYSICS LETTERS A, 2006, 351 (06) :403-412
[9]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[10]   SOME NEW INTEGRABLE NONLINEAR EVOLUTION-EQUATIONS IN 2 + 1 DIMENSIONS [J].
KONOPELCHENKO, BG ;
DUBROVSKY, VG .
PHYSICS LETTERS A, 1984, 102 (1-2) :15-17