Determining quantum Monte Carlo simulability with geometric phases

被引:12
作者
Hen, Itay [1 ,2 ,3 ]
机构
[1] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ Southern Calif, Inst Informat Sci, Marina Del Rey, CA 90292 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 02期
关键词
SIMULATIONS; COMPLEXITY;
D O I
10.1103/PhysRevResearch.3.023080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Although stoquastic Hamiltonians are known to be simulable via sign-problem-free quantum Monte Carlo (QMC) techniques, the nonstoquasticity of a Hamiltonian does not necessarily imply the existence of a QMC sign problem. We give a sufficient and necessary condition for the QMC-simulability of Hamiltonians in a given basis: We prove that a QMC simulation will be sign-problem-free if and only if all the overall total phases along the chordless cycles of the weighted graph whose adjacency matrix is the Hamiltonian are zero (modulo 2 pi). We use our findings to provide a construction for nonstoquastic, yet sign-problem-free and hence QMC-simulable, quantum many-body models. We also demonstrate why the simulation of truly sign-problematic models using the QMC weights of the stoquasticized Hamiltonian is generally suboptimal. We offer a superior alternative.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Off-diagonal expansion quantum Monte Carlo [J].
Albash, Tameem ;
Wagenbreth, Gene ;
Hen, Itay .
PHYSICAL REVIEW E, 2017, 96 (06)
[2]   Estimating errors reliably in Monte Carlo simulations of the Ehrenfest model [J].
Ambegaokar, Vinay ;
Troyer, Matthias .
AMERICAN JOURNAL OF PHYSICS, 2010, 78 (02) :150-157
[3]  
[Anonymous], ARXIVQUANTPH0210077
[4]  
Barkema M., 1999, MONTE CARLO METHODS
[5]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[6]  
Bravyi S, 2008, QUANTUM INF COMPUT, V8, P361
[7]  
Bravyi S, 2015, QUANTUM INF COMPUT, V15, P1122
[8]   De-Signing Hamiltonians for Quantum Adiabatic Optimization [J].
Crosson, Elizabeth ;
Albash, Tameem ;
Hen, Itay ;
Young, A. P. .
QUANTUM, 2020, 4
[9]   COMPLEXITY CLASSIFICATION OF LOCAL HAMILTONIAN PROBLEMS [J].
Cubitt, Toby ;
Montanaro, Ashley .
SIAM JOURNAL ON COMPUTING, 2016, 45 (02) :268-316
[10]  
de Boor C., 2005, Surveys in Approximation Theory (SAT)[electronic only], V1, P46