Photocatalytic dry reforming: what is it good for?

被引:35
作者
Tavasoli, Alexandra Victoria [1 ,2 ,3 ]
Preston, Mikaela [2 ]
Ozin, Geoffrey [1 ,2 ]
机构
[1] Univ Toronto, Dept Chem, Solar Fuels Grp, Toronto, ON, Canada
[2] Solistra Corp, Toronto, ON, Canada
[3] Univ Toronto, Funct & Adapt Surfaces Grp, Dept Mat Sci & Engn, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CO2; UTILIZATION; CARBON-DIOXIDE; METHANOL; SYNGAS; PROSPECTS; CAPTURE; BIOGAS;
D O I
10.1039/d0ee02809f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A techno-economic model of a solar dry reforming process is used to simulate fifteen case studies in which the reaction is used to produce hydrogen, methanol, and butanal from feedstocks obtained from petrochemical, biogas, landfill gas, flue gas, and direct air capture sources. The goal of this analysis is to provide perspective into the remaining technical challenges associated with the commercial application of a solar-driven dry reforming process, which has great potential to be a building block in the burgeoning global circular economy, as a result of the fact that it consumes two greenhouse gases: carbon dioxide and methane. The average available real-world scale of each feedstock is then used to postulate a minimum catalyst activity that would make the use of these feedstocks competitive with their existing petrochemical alternative. It is found that the majority of the minimum catalyst activities required by each of these applications has been demonstrated in the scientific literature in the past two decades. However, in order for these intrinsic catalytic rates to be practically realisable, significant improvements in photoreactor engineering are required to minimize transport losses and maximize photocatalyst-photon contact.
引用
收藏
页码:3098 / 3109
页数:12
相关论文
共 52 条
[41]   Sorbents for the Direct Capture of CO2 from Ambient Air [J].
Shi, Xiaoyang ;
Xiao, Hang ;
Azarabadi, Habib ;
Song, Juzheng ;
Wu, Xiaolong ;
Chen, Xi ;
Lackner, Klaus S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (18) :6984-7006
[42]  
Sorensen E., 2015, EFI GAS FLARE REDUCT
[43]   Pricing CO2 Direct Air Capture [J].
Sutherland, Brandon R. .
JOULE, 2019, 3 (07) :1571-1573
[44]  
Swanson R, TECHNOECONOMIC ANAL
[45]   Green Syngas by Solar Dry Reforming [J].
Tavasoli, Alexandra ;
Ozin, Geoffrey .
JOULE, 2018, 2 (04) :571-575
[46]   Extinction risk from climate change [J].
Thomas, CD ;
Cameron, A ;
Green, RE ;
Bakkenes, M ;
Beaumont, LJ ;
Collingham, YC ;
Erasmus, BFN ;
de Siqueira, MF ;
Grainger, A ;
Hannah, L ;
Hughes, L ;
Huntley, B ;
van Jaarsveld, AS ;
Midgley, GF ;
Miles, L ;
Ortega-Huerta, MA ;
Peterson, AT ;
Phillips, OL ;
Williams, SE .
NATURE, 2004, 427 (6970) :145-148
[47]  
Tountas A.A, 2019, ADV SCI, P6
[48]   Solar Water Splitting Cells [J].
Walter, Michael G. ;
Warren, Emily L. ;
McKone, James R. ;
Boettcher, Shannon W. ;
Mi, Qixi ;
Santori, Elizabeth A. ;
Lewis, Nathan S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6446-6473
[49]   Photocatalytic Hydrogenation of Carbon Dioxide with High Selectivity to Methanol at Atmospheric Pressure [J].
Wang, Lu ;
Ghoussoub, Mireille ;
Wang, Hong ;
Shao, Yue ;
Sun, Wei ;
Tountas, Athanasios A. ;
Wood, Thomas E. ;
Li, Hai ;
Loh, Joel Yi Yang ;
Dong, Yuchan ;
Xia, Meikun ;
Li, Young ;
Wang, Shenghua ;
Jia, Jia ;
Qiu, Chenyue ;
Qian, Chenxi ;
Kherani, Nazir P. ;
He, Le ;
Zhang, Xiaohong ;
Ozin, Geoffrey A. .
JOULE, 2018, 2 (07) :1369-1381
[50]   A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants [J].
Wang, Yuan ;
Zhao, Li ;
Otto, Alexander ;
Robinius, Martin ;
Stolten, Detlef .
13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 :650-665