A Fully Convolutional Neural Network for Wood Defect Location and Identification

被引:61
|
作者
He, Ting [1 ,2 ]
Liu, Ying [1 ]
Xu, Chengyi [1 ]
Zhou, Xiaolin [1 ]
Hu, Zhongkang [1 ]
Fan, Jianan [1 ]
机构
[1] Nanjing Forestry Univ, Coll Mech & Elect Engn, Nanjing 210037, Jiangsu, Peoples R China
[2] Huizhou Univ, Coll Elect Informat & Elect Engn, Huizhou 516000, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Deep learning; full convolutional neural network; transfer learning; wood defects detection; CLASSIFICATION; FUSION;
D O I
10.1109/ACCESS.2019.2937461
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Defect detection on solid wood surface has two main problems: (1) the real-time performance of the available methods are poor despite good detection accuracy, and (2) the defect extraction process is complicated. Here, we propose a mixed, fully convolutional neural network (Mix-FCN) to detect the location of wood defects and classify the types of defects from the wood surface images automatically. The images were collected first by a data acquisition device developed in our laboratory. We then employed TensorFlow and Python language to construct a VGG16 model. We used two kinds of datasets (dataset1 and dataset2) to maximize the limited, collected data and enable the Mix-FCN to converge rapidly during training. The weights of the filters in front of the Mix-FCN during training were initialized from the trained VGG16 model. The weights of the VGG16 net were learned by dataset1. Our model was trained, validated, and tested by dataset 2. Overall classification accuracy (OCA), pixel accuracy (PA), mean intersection over union, detection rate, missing alarm, false alarm rate, and precision were used to evaluate the network, and the performance was good based on the seven evaluation indicators. We achieved 99.14% OCA and 91.31% PA, and a batch of 50 images required only 0.368 s of detection time. Our proposed method has better accuracy and less detection time compared to the previous methods of wood detection.
引用
收藏
页码:123453 / 123462
页数:10
相关论文
共 50 条
  • [41] Chip Appearance Defect Recognition Based on Convolutional Neural Network
    Wang, Jun
    Zhou, Xiaomeng
    Wu, Jingjing
    SENSORS, 2021, 21 (21)
  • [42] Convolutional neural network for sapphire ingots defect detection and classification
    Rwagasore, Euphrem Mugisha
    Zhang, Xiong
    Gao, Kaifang
    Gao, Zuoxuan
    Zan, Zhitao
    Lui, Xiaohu
    Wang, Mengtong
    Mi, Yuhang
    Chen, Hongjian
    Yan, Wenbo
    OPTICAL MATERIALS, 2021, 119
  • [43] Identifying Capsule Defect Based on an Improved Convolutional Neural Network
    Zhou, Junlin
    He, Jiao
    Li, Guoli
    Liu, Yongbin
    SHOCK AND VIBRATION, 2020, 2020
  • [44] Germinative paddy seed identification using deep convolutional neural network
    Islam, Mohammad Aminul
    Hassan, Md. Rakib
    Uddin, Machbah
    Shajalal, Md
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 39481 - 39501
  • [45] Convolutional neural network: a review of models, methodologies and applications to object detection
    Dhillon, Anamika
    Verma, Gyanendra K.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (02) : 85 - 112
  • [46] Convolutional neural network for preprocessing-free bacterial Spectra identification
    Kim, Younghoon
    Lee, Jiyoon
    Ahn, Gonie
    Santos, Ines C.
    Schug, Kevin A.
    Kim, Seoung Bum
    JOURNAL OF CHEMOMETRICS, 2020, 34 (11)
  • [47] Crack Detection and Location Estimation Using a Convolutional Neural Network
    Ding, Mengling
    Won, Kwanghee
    FRONTIERS OF COMPUTER VISION, IW-FCV 2021, 2021, 1405 : 184 - 188
  • [48] Copper Strip Surface Defect Detection Model Based on Deep Convolutional Neural Network
    Xu, Yanghuan
    Wang, Dongcheng
    Duan, Bowei
    Yu, Huaxin
    Liu, Hongmin
    APPLIED SCIENCES-BASEL, 2021, 11 (19):
  • [49] Review: Application of Convolutional Neural Network in Defect Detection of 3C Products
    Ming, Wuyi
    Cao, Chen
    Zhang, Guojun
    Zhang, Hongmei
    Zhang, Fei
    Jiang, Zhiwen
    Yuan, Jie
    IEEE ACCESS, 2021, 9 : 135657 - 135674
  • [50] Surface Defect Detection of Heat Sink Based on Lightweight Fully Convolutional Network
    Yang, Kaifeng
    Liu, Yuliang
    Zhang, Shiwen
    Cao, Jiajian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71