On the convergence of a solution of the discrete Lotka-Volterra system

被引:42
|
作者
Iwasaki, M [1 ]
Nakamura, Y [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
D O I
10.1088/0266-5611/18/6/309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For arbitrary positive discrete step size 8 a determinantal solution of the discrete-time Lotka-Volterra (dLV) system is shown to asymptotically converge to the square of some singular value of a given bidiagonal matrix, where the initial value of the dLV system is uniquely determined by the entries of the matrix. Some basic properties of the solution are proved which are important for designing a new numerical algorithm for computing all of the singular values. They are a positivity of solution, a dependence of the correct initial value on delta, a sorting property and an acceleration of convergence speed by enlarging delta.
引用
收藏
页码:1569 / 1578
页数:10
相关论文
共 50 条
  • [1] Stable periodic solution of a discrete periodic Lotka-Volterra competition system
    Chen, YM
    Zhou, Z
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) : 358 - 366
  • [2] A discrete periodic Lotka-Volterra system with delays
    Zeng, XY
    Shi, B
    Gai, MJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 491 - 500
  • [3] On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols
    Czyzowicz, Jurek
    Gasieniec, Leszek
    Kosowski, Adrian
    Kranakis, Evangelos
    Spirakis, Paul G.
    Uznanski, Przemyslaw
    Automata, Languages, and Programming, Pt I, 2015, 9134 : 393 - 405
  • [4] On convergence and threshold properties of discrete Lotka-Volterra population protocols
    Czyzowicz, Jurek
    Gasieniec, Leszek
    Kosowski, Adrian
    Kranakis, Evangelos
    Spirakis, Paul G.
    Uzna, Przemyslaw
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2022, 130 : 1 - 25
  • [5] The global stability of a Lotka-Volterra system with discrete diffusions
    Yang, Ming
    Yang, Jing
    Lu, Guichen
    Lu, Zhengyi
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2020, 20 (01) : 121 - 132
  • [6] The discrete Lotka-Volterra system computes singular values
    Tsujimoto, S
    Nakamura, Y
    Iwasaki, M
    INVERSE PROBLEMS, 2001, 17 (01) : 53 - 58
  • [7] POSITIVE PERIODIC SOLUTION OF A DISCRETE OBLIGATE LOTKA-VOLTERRA MODEL
    Chen, Fengde
    Pu, Liqiong
    Yang, Liya
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2015,
  • [8] Dynamics of a discrete Lotka-Volterra model
    Qamar Din
    Advances in Difference Equations, 2013
  • [9] Dynamics of a discrete Lotka-Volterra model
    Din, Qamar
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [10] Lotka-Volterra System with Volterra Multiplier
    Guerlebeck, Klaus
    Ji, Xihhua
    SOFTWARE TOOLS AND ALGORITHMS FOR BIOLOGICAL SYSTEMS, 2011, 696 : 647 - 655