Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment

被引:20
|
作者
Edberg, N. J. T. [1 ,9 ]
Auster, U. [2 ]
Barabash, S. [3 ]
Boesswetter, A. [4 ]
Brain, D. A. [5 ]
Burch, J. L. [6 ]
Carr, C. M. [7 ]
Cowley, S. W. H. [1 ]
Cupido, E. [7 ]
Duru, F. [8 ]
Eriksson, A. I. [9 ]
Fraenz, M. [10 ]
Glassmeier, K. -H. [2 ,10 ]
Goldstein, R. [6 ]
Lester, M. [1 ]
Lundin, R. [3 ]
Modolo, R. [11 ]
Nilsson, H. [3 ]
Richter, I. [2 ]
Samara, M. [6 ]
Trotignon, J. G. [12 ]
机构
[1] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England
[2] TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany
[3] Swedish Inst Space Phys, S-98128 Kiruna, Sweden
[4] TU Braunschweig, Inst Theoret Phys, Braunschweig, Germany
[5] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[6] SW Res Inst, San Antonio, TX USA
[7] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England
[8] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[9] Swedish Inst Space Phys, Uppsala, Sweden
[10] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany
[11] CETP IPSL, F-78140 Velizy Villacoublay, France
[12] Lab Phys & Chim Environm, Orleans, France
关键词
Interplanetary physics; Planetary bow shocks; Magnetospheric physics; Magnetosheath; Solar wind interactions with unmagnetized bodies; PILE-UP BOUNDARY; GLOBAL-SURVEYOR; BOW SHOCK; ASPERA-3; OBSERVATIONS; HYBRID SIMULATIONS; RPC; CONSORTIUM; MISSION; SHAPES;
D O I
10.5194/angeo-27-4533-2009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX) on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during similar to 24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF) downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.
引用
收藏
页码:4533 / 4545
页数:13
相关论文
共 50 条
  • [41] Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars
    Ma, YJ
    Nagy, AF
    Sokolov, IV
    Hansen, KC
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A7)
  • [42] Waves at the electron plasma frequency associated with solar wind magnetic holes: STEREO/Cluster observations
    Briand, C.
    Soucek, J.
    Henri, P.
    Mangeney, A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [43] Using Single-view Observations of Cometary Plasma Tails to Infer Solar Wind Speed
    Cheng, Long
    Wang, Yuming
    Li, Xiaolei
    ASTROPHYSICAL JOURNAL, 2022, 928 (02)
  • [44] Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars
    Najib, Dalal
    Nagy, Andrew F.
    Toth, Gabor
    Ma, Yingjuan
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [45] SOLAR WIND SPEED INFERRED FROM COMETARY PLASMA TAILS USING OBSERVATIONS FROM STEREO HI-1
    Clover, John M.
    Jackson, Bernard V.
    Buffington, Andrew
    Hick, P. Paul
    Bisi, Mario M.
    ASTROPHYSICAL JOURNAL, 2010, 713 (01) : 394 - 397
  • [46] A modelling approach to infer the solar wind dynamic pressure from magnetic field observations inside Mercury's magnetosphere
    Fatemi, S.
    Poirier, N.
    Holmstrom, M.
    Lindkvist, J.
    Wieser, M.
    Barabash, S.
    ASTRONOMY & ASTROPHYSICS, 2018, 614
  • [47] Can an impulsive variation of the solar wind plasma pressure trigger a plasma bubble? A case study based on CSES, Swarm and THEMIS data
    Piersanti, M.
    Pezzopane, M.
    Zhima, Z.
    Diego, P.
    Xiong, C.
    Tozzi, R.
    Pignalberi, A.
    D'Angelo, G.
    Battiston, R.
    Huang, J.
    Picozza, P.
    Rui, Y.
    Shen, X.
    Sparvoli, R.
    Ubertini, P.
    Yang, Y.
    Zoffoli, S.
    ADVANCES IN SPACE RESEARCH, 2021, 67 (01) : 35 - 45
  • [48] High-latitude plasma convection from Cluster EDI:: variances and solar wind correlations
    Foerster, M.
    Paschmann, G.
    Haaland, S. E.
    Quinn, J. M.
    Torbert, R. B.
    Vaith, H.
    Kletzing, C. A.
    ANNALES GEOPHYSICAE, 2007, 25 (07) : 1691 - 1707
  • [49] Statistical Study of Solar Wind, Magnetosheath, and Magnetotail Plasma and Field Properties: 12+Years of THEMIS Observations and MHD Simulations
    Ma, Xuanye
    Nykyri, Katariina
    Dimmock, Andrew
    Chu, Christina
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (10)
  • [50] Plasma and Magnetic-Field Characteristics of Magnetic Decreases in the Solar Wind at 1 AU: Cluster-C1 Observations
    Xiao, T.
    Shi, Q. Q.
    Tian, A. M.
    Sun, W. J.
    Zhang, H.
    Shen, X. C.
    Shang, W. S.
    Du, A. M.
    SOLAR PHYSICS, 2014, 289 (08) : 3175 - 3195