Modified and Optimized Method for Segmenting Pulmonary Parenchyma in CT Lung Images, Based on Fractional Calculus and Natural Selection

被引:5
作者
Kumar, S. Pramod [1 ]
Latte, Mrityunjaya, V [2 ]
机构
[1] Kalpataru Inst Technol, Elect & Commun Engn, Tiptur, Karnataka, India
[2] JSS Acad Tech Educ, Bengaluru, India
基金
美国国家卫生研究院;
关键词
Segmentation; 2D Otsu; PSO; DPSO; FODPSO; CT lung image; thresholding; pulmonary parenchyma; EFFICIENT METHOD; SEGMENTATION;
D O I
10.1515/jisys-2017-0028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computer-aided diagnosis of lung segmentation is the fundamental requirement to diagnose lung diseases. In this paper, a two-dimensional (2D) Otsu algorithm by Darwinian particle swarm optimization (DPSO) and fractional-order Darwinian particle swarm optimization (FODPSO) is proposed to segment the pulmonary parenchyma from the lung image obtained through computed tomography (CT) scans. The proposed method extracts pulmonary parenchyma from multi-sliced CT. This is a preprocessing step to identify pulmonary diseases such as emphysema, tumor, and lung cancer. Image segmentation plays a significant role in automated pulmonary disease diagnosis. In traditional 2D Otsu, exhaustive search plays an important role in image segmentation. However, the main disadvantage of the 2D Otsu method is its complex computation and processing time. In this paper, the 2D Otsu method optimized by DPSO and FODPSO is developed to reduce complex computations and time. The efficient segmentation is very important in object classification and detection. The particle swarm optimization (PSO) method is widely used to speed up the computation and maintain the same efficiency. In the proposed algorithm, the limitation of PSO of getting trapped in local optimum solutions is overcome. The segmentation technique is assessed and equated with the traditional 2D Otsu method. The test results demonstrate that the proposed strategy gives better results. The algorithm is tested on the Lung Image Database Consortium image collections.
引用
收藏
页码:721 / 732
页数:12
相关论文
共 27 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]  
Chen X., 2014, J COMPUT INF SYST, V10, P4287, DOI [10.12733/jcis10307, DOI 10.12733/JCIS10307]
[3]   An efficient method of automatic pulmonary parenchyma segmentation in CT images [J].
Chen, Zhaoxue ;
Sun, Xiwen ;
Nie, Shengdong .
2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, :5540-+
[4]   Introducing the fractional-order Darwinian PSO [J].
Couceiro, Micael S. ;
Rocha, Rui P. ;
Fonseca Ferreira, N. M. ;
Tenreiro Machado, J. A. .
SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) :343-350
[5]  
Dincer Esra, 2016, 2016 Elektrik-Elektronik, Bilgisayer, Biyomedikal Muhendislikleri Bilimsel Toplantisi (EBBT) [2016 Electrical, Electronic, Computer and Biomedical Engineering Meeting (EBBT)], P1, DOI 10.1109/EBBT.2016.7483681
[6]  
Eberhart R, 1995, A new optimizer using particle swarm theory, P39, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/mhs.1995.494215]
[7]   An efficient method for segmentation of images based on fractional calculus and natural selection [J].
Ghamisi, Pedram ;
Couceiro, Micael S. ;
Benediktsson, Jon Atli ;
Ferreira, Nuno M. F. .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (16) :12407-12417
[8]  
Guo J, 2002, 2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, P871, DOI 10.1109/ISBI.2002.1029398
[9]  
Helen R., 2011, 2011 Proceedings of International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT 2011), P536, DOI 10.1109/ICETECT.2011.5760176
[10]   Assessment of the pulmonary structure-function relationship and clinical outcomes measures: Quantitative volumetric CT of the lung [J].
Hoffman, EA ;
McLennan, G .
ACADEMIC RADIOLOGY, 1997, 4 (11) :758-776