Consistent Hydrodynamics for Phase Field Crystals

被引:52
作者
Heinonen, V. [1 ]
Achim, C. V. [1 ]
Kosterlitz, J. M. [2 ]
Ying, See-Chen [2 ]
Lowengrub, J. [3 ,4 ]
Ala-Nissila, T. [1 ,2 ]
机构
[1] Aalto Univ, COMP Ctr Excellence, Dept Appl Phys, Sch Sci, FI-00076 Aalto, Finland
[2] Brown Univ, Dept Phys, Providence, RI 02912 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
基金
美国国家科学基金会; 芬兰科学院;
关键词
GRAIN-BOUNDARY MIGRATION; ROTATION; DIMENSIONS; DYNAMICS;
D O I
10.1103/PhysRevLett.116.024303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission.
引用
收藏
页数:5
相关论文
共 24 条
[1]   Unified Theoretical Framework for Polycrystalline Pattern Evolution [J].
Adland, Ari ;
Xu, Yechuan ;
Karma, Alain .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[2]   Renormalization-group theory for the phase-field crystal equation [J].
Athreya, Badrinarayan P. ;
Goldenfeld, Nigel ;
Dantzig, Jonathan A. .
PHYSICAL REVIEW E, 2006, 74 (01)
[3]   Kinetic density functional theory of freezing [J].
Baskaran, Arvind ;
Baskaran, Aparna ;
Lowengrub, John .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (17)
[4]   A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation [J].
Cahn, JW ;
Taylor, JE .
ACTA MATERIALIA, 2004, 52 (16) :4887-4898
[5]   Modeling elasticity in crystal growth [J].
Elder, KR ;
Katakowski, M ;
Haataja, M ;
Grant, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (24) :2457011-2457014
[6]   Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview [J].
Emmerich, Heike ;
Loewen, Hartmut ;
Wittkowski, Raphael ;
Gruhn, Thomas ;
Toth, Gyula I. ;
Tegze, Gyorgy ;
Granasy, Laszlo .
ADVANCES IN PHYSICS, 2012, 61 (06) :665-743
[7]   The design and implementation of FFTW3 [J].
Frigo, M ;
Johnson, SG .
PROCEEDINGS OF THE IEEE, 2005, 93 (02) :216-231
[8]   Phase-field-crystal and Swift-Hohenberg equations with fast dynamics [J].
Galenko, Peter ;
Danilov, Denis ;
Lebedev, Vladimir .
PHYSICAL REVIEW E, 2009, 79 (05)
[9]   Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model [J].
Goldenfeld, N ;
Athreya, BP ;
Dantzig, JA .
PHYSICAL REVIEW E, 2005, 72 (02)
[10]   Pattern coarsening in a 2D hexagonal system [J].
Harrison, C ;
Angelescu, DE ;
Trawick, M ;
Cheng, ZD ;
Huse, DA ;
Chaikin, PM ;
Vega, DA ;
Sebastian, JM ;
Register, RA ;
Adamson, DH .
EUROPHYSICS LETTERS, 2004, 67 (05) :800-806