Thermal effects on electro-osmotic pumping of liquids in microchannels

被引:45
作者
Zhao, TS [1 ]
Liao, Q [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1088/0960-1317/12/6/329
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we present a mathematical model predicting combined electro-osmotic- and pressure-driven flow behavior in a straight microchannel for the case when the system is under a non-isothermal condition. The distribution of the charge density is governed by a nonlinear, two-dimensional Poisson-Boltzmann equation, and a body force caused by the interaction between the charge density and the applied electrical potential field is included in the full Navier-Stokes equations. Under non-isothermal conditions, arising from heat sources (Joule heating) within the system and/or a temperature difference between the system and the ambient, the equation of energy conservation describing temperature distribution has to be considered as well. The governing equations, interlinked via temperature, are solved numerically using a finite difference method. The numerical results indicate that for a given cross-sectional mean velocity, there exists an optimal dimensionless parameter (kappah), which is the inverse Debye length multiplied by the channel size, which gives the highest hydraulic head generated by the electro-osmotic force. It has also been demonstrated that the pumping performance predicted by the isothermal model deviates substantially from that predicted by the non-isothermal model when Joule heating is significant.
引用
收藏
页码:962 / 970
页数:9
相关论文
共 36 条
[1]  
Andreev VP, 1997, J MICROCOLUMN SEP, V9, P443, DOI 10.1002/(SICI)1520-667X(1997)9:6<443::AID-MCS1>3.0.CO
[2]  
2-1
[3]   Liquid transport in rectangular microchannels by electroosmotic pumping [J].
Arulanandam, S ;
Li, DQ .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 161 (01) :89-102
[4]  
BIANCHI F, 2000, ANAL CHEM, V72
[5]   METHODS FOR CALCULATING THE INTERNAL TEMPERATURE OF CAPILLARY COLUMNS DURING CAPILLARY ELECTROPHORESIS [J].
BURGI, DS ;
SALOMON, K ;
CHIEN, RL .
JOURNAL OF LIQUID CHROMATOGRAPHY, 1991, 14 (05) :847-867
[6]   ELECTROKINETIC FLOW IN ULTRAFINE CAPILLARY SLITS [J].
BURGREEN, D ;
NAKACHE, FR .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (05) :1084-&
[7]   Conditions for similitude between the fluid velocity and electric field in electroosmotic flow [J].
Cummings, EB ;
Griffiths, SK ;
Nilson, RH ;
Paul, PH .
ANALYTICAL CHEMISTRY, 2000, 72 (11) :2526-2532
[8]   AUXILIARY ELECTROOSMOTIC PUMPING IN CAPILLARY ELECTROPHORESIS [J].
DASGUPTA, PK ;
LIU, SR .
ANALYTICAL CHEMISTRY, 1994, 66 (19) :3060-3065
[9]  
Debye P, 1923, PHYS Z, V24, P185
[10]  
Debye P, 1923, PHYS Z, V24, P305