Bipartite graphs with at most six non-zero eigenvalues

被引:26
作者
Oboudi, Mohammad Reza [1 ,2 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz 7145744776, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Eigenvalues of graphs; bipartite graphs; RANK;
D O I
10.26493/1855-3974.749.264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we characterize all bipartite graphs with at most six non-zero eigenvalues. We determine the eigenvalues of bipartite graphs that have at most four non-zero eigenvalues.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 10 条
[1]  
[Anonymous], 2010, INTRO THEORY GRAPH S
[2]   A characterization of graphs with rank 5 [J].
Chang, Gerard J. ;
Huang, Liang-Hao ;
Yeh, Hong-Gwa .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (11) :4241-4250
[3]   A characterization of graphs with rank 4 [J].
Chang, Gerard J. ;
Huang, Liang-Hao ;
Yeh, Hong-Gwa .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (08) :1793-1798
[4]  
Cvetkovic DM, 1980, PURE APPL MATH, V87
[5]   On the nullity of bipartite graphs [J].
Fan, Yi-Zheng ;
Qian, Ke-Shi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (11-12) :2943-2949
[6]   The main eigenvalues and number of walks in self-complementary graphs [J].
Farrugia, Alexander ;
Sciriha, Irene .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (10) :1346-1360
[7]  
Kotlov A, 1996, J GRAPH THEOR, V23, P185, DOI 10.1002/(SICI)1097-0118(199610)23:2<185::AID-JGT9>3.0.CO
[8]  
2-P
[9]  
Sciriha I., 1999, Graph Theory and Algorithms II, VII, P769
[10]  
Wang Long, 2014, [Journal of Mathematical Research with Applications, 数学研究及应用], V34, P517