Recent Progress in Long Noncoding RNAs Prediction

被引:9
作者
Yao, Yuhua [1 ]
Li, Xianhong [2 ]
Geng, Lili [2 ]
Nan, Xuying [1 ]
Qi, Zhaohui [3 ]
Liao, Bo [1 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
[2] Zhejiang Sci Tech Univ, Coll Life Sci, Hangzhou 310018, Zhejiang, Peoples R China
[3] Shijiazhuang Tiedao Univ, Coll Informat Sci & Technol, Shijiazhuang 050043, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Long noncoding RNA; support vector machine; Random Forest; CPC; LncRScan-SVM; SUPPORT VECTOR MACHINE; PROTEIN-SEQUENCE; REVEALS; IDENTIFICATION; ANNOTATION; CLASSIFICATION; TRANSCRIPTS; FEATURES;
D O I
10.2174/1574893612666170905153933
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: As potent gene regulators, long noncoding RNAs (lncRNAs) are critical in various biological activities, such as cellular processes. With the development of new sequencing technologies, vast amount of transcriptome data are available, which require efficient computational tools to distinguish noncoding RNAs from their coding counterparts, especially for lncRNAs. Methods: In this paper, we review the advancement of computational methods in predicting lncRNAs, summarize the difficulties in developing machine learning algorithms, and point out a few promising future directions. We also briefly summarize and describe popular softwares and web-servers in the area. Results and Conclusion: Given the exponentially expanding transcriptome data and increasing importance of lncRNAs in disease development and treatment, novel and effective computational tools for identifying lncRNAs are highly demanded.
引用
收藏
页码:344 / 351
页数:8
相关论文
共 46 条
[1]   Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation [J].
Alvarez-Dominguez, Juan R. ;
Hu, Wenqian ;
Yuan, Bingbing ;
Shi, Jiahai ;
Park, Staphany S. ;
Gromatzky, Austin A. ;
van Oudenaarden, Alexander ;
Lodish, Harvey F. .
BLOOD, 2014, 123 (04) :570-581
[2]   lncRNAdb: a reference database for long noncoding RNAs [J].
Amaral, Paulo P. ;
Clark, Michael B. ;
Gascoigne, Dennis K. ;
Dinger, Marcel E. ;
Mattick, John S. .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D146-D151
[3]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[4]   Global identification of human transcribed sequences with genome tiling arrays [J].
Bertone, P ;
Stolc, V ;
Royce, TE ;
Rozowsky, JS ;
Urban, AE ;
Zhu, XW ;
Rinn, JL ;
Tongprasit, W ;
Samanta, M ;
Weissman, S ;
Gerstein, M ;
Snyder, M .
SCIENCE, 2004, 306 (5705) :2242-2246
[5]   Protein function prediction via graph kernels [J].
Borgwardt, KM ;
Ong, CS ;
Schönauer, S ;
Vishwanathan, SVN ;
Smola, AJ ;
Kriegel, HP .
BIOINFORMATICS, 2005, 21 :I47-I56
[6]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[7]  
Bu D, 2011, NUCLEIC ACIDS RES, V40, P210
[8]   tRNA properties help shape codon pair preferences in open reading frames [J].
Buchan, JR ;
Aucott, LS ;
Stansfield, I .
NUCLEIC ACIDS RESEARCH, 2006, 34 (03) :1015-1027
[9]   Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses [J].
Cabili, Moran N. ;
Trapnell, Cole ;
Goff, Loyal ;
Koziol, Magdalena ;
Tazon-Vega, Barbara ;
Regev, Aviv ;
Rinn, John L. .
GENES & DEVELOPMENT, 2011, 25 (18) :1915-1927
[10]   The transcriptional landscape of the mammalian genome [J].
Carninci, P ;
Kasukawa, T ;
Katayama, S ;
Gough, J ;
Frith, MC ;
Maeda, N ;
Oyama, R ;
Ravasi, T ;
Lenhard, B ;
Wells, C ;
Kodzius, R ;
Shimokawa, K ;
Bajic, VB ;
Brenner, SE ;
Batalov, S ;
Forrest, ARR ;
Zavolan, M ;
Davis, MJ ;
Wilming, LG ;
Aidinis, V ;
Allen, JE ;
Ambesi-Impiombato, X ;
Apweiler, R ;
Aturaliya, RN ;
Bailey, TL ;
Bansal, M ;
Baxter, L ;
Beisel, KW ;
Bersano, T ;
Bono, H ;
Chalk, AM ;
Chiu, KP ;
Choudhary, V ;
Christoffels, A ;
Clutterbuck, DR ;
Crowe, ML ;
Dalla, E ;
Dalrymple, BP ;
de Bono, B ;
Della Gatta, G ;
di Bernardo, D ;
Down, T ;
Engstrom, P ;
Fagiolini, M ;
Faulkner, G ;
Fletcher, CF ;
Fukushima, T ;
Furuno, M ;
Futaki, S ;
Gariboldi, M .
SCIENCE, 2005, 309 (5740) :1559-1563