Multi-digit Image Synthesis Using Recurrent Conditional Variational Autoencoder

被引:0
|
作者
Sun, Haoze [1 ]
Xu, Weidi [1 ]
Deng, Chao [1 ]
Tan, Ying [1 ]
机构
[1] Peking Univ, Key Lab Machine Percept MOE, Dept Machine Intelligence, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
来源
2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2016年
基金
北京市自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of deep neural networks, several generative methods have been proposed to address the challenges from generative and discriminative tasks, e.g., natural language process, image caption and image generation. In this paper, a conditional recurrent variational autoencoder is proposed for multi-digit image synthesis. This model is capable of generating multi-digit images from the given number sequences and retaining the generalisation ability to recover different types of background. Our method is evaluated on SVHN dataset and the experimental results show it succeeds to generate multi-digit images with various styles according to the given sequential inputs. The generated images can also be easily identified by both human beings and convolutional neural networks for digit classification.
引用
收藏
页码:375 / 380
页数:6
相关论文
共 50 条
  • [21] Diversifying Reply Suggestions using a Matching-Conditional Variational Autoencoder
    Deb, Budhaditya
    Bailey, Peter
    Shokouhi, Milad
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES(NAACL HLT 2019), VOL. 2 (INDUSTRY PAPERS), 2019, : 40 - 47
  • [22] Infrared Image Colorization Network using Variational AutoEncoder
    Kim, Heyongyu
    Kim, Jonghyun
    Kim, Joongkyu
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [23] Monophonic Music Generation With a Given Emotion Using Conditional Variational Autoencoder
    Grekow, Jacek
    Dimitrova-Grekow, Teodora
    IEEE ACCESS, 2021, 9 : 129088 - 129101
  • [24] Autonomous Vehicle Path Prediction Using Conditional Variational Autoencoder Networks
    Jagadish, D. N.
    Chauhan, Arun
    Mahto, Lakshman
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 129 - 139
  • [25] Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder
    Gan, Meng
    Wang, Cong
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (03) : 1188 - 1201
  • [26] Text Guided Facial Image Synthesis Using StyleGAN and Variational Autoencoder Trained CLIP
    Srinivasa, Anagha
    Praveen, Anjali
    Mavathur, Anusha
    Pothumarthi, Apurva
    Arya, Arti
    Agarwal, Pooja
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 78 - 90
  • [27] Electromagnetic Field Reconstruction and Source Identification Using Conditional Variational Autoencoder and CNN
    Barmada, Sami
    Barba, Paolo Di
    Fontana, Nunzia
    Mognaschi, Maria Evelina
    Tucci, Mauro
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2023, 8 : 322 - 331
  • [28] Optimization of force-field potential parameters using conditional variational autoencoder
    Matsunoshita, Koki
    Yamaguchi, Yudai
    Hamaie, Masato
    Horibe, Motoki
    Tanibata, Naoto
    Takeda, Hayami
    Nakayama, Masanobu
    Karasuyama, Masayuki
    Kobayashi, Ryo
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS-METHODS, 2023, 3 (01):
  • [29] LEARNING TO SYNTHESIZE CORTICAL MORPHOLOGICAL CHANGES USING GRAPH CONDITIONAL VARIATIONAL AUTOENCODER
    Chai, Yaqiong
    Liu, Mengting
    Duffy, Ben A.
    Kim, Hosung
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1495 - 1499
  • [30] Vehicle Trajectory Prediction Using Intention-based Conditional Variational Autoencoder
    Feng, Xidong
    Cen, Zhepeng
    Hu, Jianming
    Zhang, Yi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3514 - 3519