Multiple wavelet basis image denoising using Besov ball projections

被引:40
作者
Choi, H [1 ]
Baraniuk, RG [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
Besov; denoising; POCS; wavelet;
D O I
10.1109/LSP.2004.833493
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new image denoising algorithm that exploits an image's representation in multiple wavelet domains. Besov balls are convex sets of images, whose Besov norms are bounded from above by their radii. Projecting an image onto a Besov ball of proper radius corresponds to a type of wavelet shrinkage for image denoising. By defining Besov balls in multiple wavelet domains and projecting onto their intersection using the projection onto convex sets (POCS) algorithm, we obtain an estimate that effectively combines estimates from multiple wavelet domains. While simple, the algorithm provides significant improvement over conventional wavelet shrinkage algorithms based on a single wavelet domain.
引用
收藏
页码:717 / 720
页数:4
相关论文
共 13 条
[1]   On the Initialization of the Discrete Wavelet Transform Algorithm [J].
Abry, Patrice ;
Flandrin, Patrick .
IEEE SIGNAL PROCESSING LETTERS, 1994, 1 (02) :32-34
[2]  
[Anonymous], 1997, A Wavelet Tour of Signal Processing
[3]   Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage [J].
Chambolle, A ;
DeVore, RA ;
Lee, NY ;
Lucier, BJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :319-335
[4]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[5]   Tree approximation and optimal encoding [J].
Cohen, A ;
Dahmen, W ;
Daubechies, I ;
DeVore, R .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 11 (02) :192-226
[6]   IMAGE COMPRESSION THROUGH WAVELET TRANSFORM CODING [J].
DEVORE, RA ;
JAWERTH, B ;
LUCIER, BJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :719-746
[7]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[8]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224
[9]   Improved wavelet denoising via empirical Wiener filtering [J].
Ghael, SP ;
Sayeed, AM ;
Baraniuk, RG .
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING V, 1997, 3169 :389-399
[10]  
Ishwar P., 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), P362, DOI 10.1109/ICIP.1999.821631