Monotone Boolean formulas can approximate monotone linear threshold functions

被引:9
作者
Servedio, RA [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
linear threshold functions; Boolean formulas; monotone computation;
D O I
10.1016/j.dam.2004.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that any monotone linear threshold function on n Boolean variables can be approximated to within any constant accuracy by a monotone Boolean formula of poly(n) size. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 11 条
[1]   SORTING IN C LOG N PARALLEL STEPS [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
COMBINATORICA, 1983, 3 (01) :1-19
[2]  
[Anonymous], I HAUTES ETUDES SCI
[3]  
[Anonymous], 1992, COMPUT COMPLEX, DOI 10.1007/BF01200426
[4]   Simulating threshold circuits by majority circuits [J].
Goldmann, M ;
Karpinski, M .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :230-246
[5]  
GRIGNI M, 1992, LMS LECTURE NOTES, P57
[6]  
HAERDLE W, PARTIALLY LINEAR MOD
[7]   ON THE SIZE OF WEIGHTS FOR THRESHOLD GATES [J].
HASTAD, J .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (03) :484-492
[8]  
Muroga S., 1971, THRESHOLD LOGIC ITS
[9]  
PETROV V.V., 1995, Limit Theorems of Probability Theory: Sequences of Independent Random Variables
[10]   SHORT MONOTONE FORMULAS FOR THE MAJORITY FUNCTION [J].
VALIANT, LG .
JOURNAL OF ALGORITHMS, 1984, 5 (03) :363-366