Light-microgel interaction in resonant nanostructures

被引:19
作者
Giaquinto, M. [1 ]
Ricciardi, A. [1 ]
Aliberti, A. [1 ]
Micco, A. [1 ]
Bobeico, E. [2 ]
Ruvo, M. [3 ]
Cusano, A. [1 ]
机构
[1] Univ Sannio, Dept Engn, Optoelect Grp, I-82100 Benevento, Italy
[2] ENEA, Portici Res Ctr, Ple E Fermi 1, I-80055 Naples, Italy
[3] CNR, Inst Biostruct & Bioimaging, I-80143 Naples, Italy
关键词
VOLUME PHASE-TRANSITION; ON-FIBER TECHNOLOGY; PROTEIN-CONCENTRATION; RESPONSIVE MICROGELS; TEMPERATURE; LAB; PH; BIOSENSORS; HYDROGELS; POLYMERS;
D O I
10.1038/s41598-018-27197-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Combination of responsive microgels and photonic resonant nanostructures represents an intriguing technological tool for realizing tunable and reconfigurable platforms, especially useful for biochemical sensing applications. Interaction of light with microgel particles during their swelling/shrinking dynamics is not trivial because of the inverse relationships between their size and refractive index. In this work, we propose a reliable analytical model describing the optical properties of closed-packed assembly of surface-attached microgels, as a function of the external stimulus applied. The relationships between the refractive index and thickness of the equivalent microgel slab are derived from experimental observations based on conventional morphological analysis. The model is first validated in the case of temperature responsive microgels integrated on a plasmonic lab-on-fiber optrode, and also implemented in the same case study for an optical responsivity optimization problem. Overall, our model can be extended to other photonic platforms and different kind of microgels, independently from the nature of the stimulus inducing their swelling.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Microgel assisted Lab-on-Fiber Optrode [J].
Aliberti, A. ;
Ricciardi, A. ;
Giaquinto, M. ;
Micco, A. ;
Bobeico, E. ;
La Ferrara, V. ;
Ruvo, M. ;
Cutolo, A. ;
Cusano, A. .
SCIENTIFIC REPORTS, 2017, 7
[2]   Optical Waveguide Spectroscopy for the Investigation of Protein-Functionalized Hydrogel Films [J].
Aulasevich, Alena ;
Roskamp, Robert F. ;
Jonas, Ulrich ;
Menges, Bernhard ;
Dostalek, Jakub ;
Knoll, Wolfgang .
MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (9-10) :872-877
[3]   Hydrogels in sensing applications [J].
Buenger, Daniel ;
Topuz, Fuat ;
Groll, Juergen .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (12) :1678-1719
[4]   Temperature Response of PNIPAM Derivatives at Planar Surfaces: Comparison between Polyelectrolyte Multilayers and Adsorbed Microgels [J].
Burmistrova, Anna ;
Steitz, Roland ;
von Klitzing, Regine .
CHEMPHYSCHEM, 2010, 11 (17) :3571-3579
[5]   Optical Guidance Systems for Epidural Space Identification [J].
Carotenuto, Benito ;
Micco, Alberto ;
Ricciardi, Armando ;
Amorizzo, Ezio ;
Mercieri, Marco ;
Cutolo, Antonello ;
Cusano, Andrea .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (02) :371-379
[6]   Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes [J].
Consales, Marco ;
Ricciardi, Armando ;
Crescitelli, Alessio ;
Esposito, Emanuela ;
Cutolo, Antonello ;
Cusano, Andrea .
ACS NANO, 2012, 6 (04) :3163-3170
[7]  
Cusano A., 2015, LAB ON FIBER TECHNOL, V56
[8]   Promises and challenges of nanoplasmonic devices for refractometric biosensing [J].
Dahlin, Andreas B. ;
Wittenberg, Nathan J. ;
Hook, Fredrik ;
Oh, Sang-Hyun .
NANOPHOTONICS, 2013, 2 (02) :83-101
[9]   Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures [J].
Debord, JD ;
Lyon, LA .
LANGMUIR, 2003, 19 (18) :7662-7664
[10]   Extraordinary optical transmission through sub-wavelength hole arrays [J].
Ebbesen, TW ;
Lezec, HJ ;
Ghaemi, HF ;
Thio, T ;
Wolff, PA .
NATURE, 1998, 391 (6668) :667-669