Robust H∞ control of uncertain linear system with interval time-varying delays by using Wirtinger inequality

被引:39
作者
Sun, Yonghui [1 ]
Li, Ning [1 ]
Shen, Mouquan [2 ]
Wei, Zhinong [1 ]
Sun, Guoqiang [1 ]
机构
[1] Hohai Univ, Coll Energy & Elect Engn, Nanjing 210098, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Time-delay system; Delay-dependent; H-infinity control; Wirtinger inequality; NEURAL-NETWORKS; STABILITY ANALYSIS; DEPENDENT STABILITY; POWER-SYSTEM; CRITERIA; DISCRETE;
D O I
10.1016/j.amc.2018.04.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the robust H-infinity control problem of uncertain linear system with interval time-varying delays. Firstly, by using Wirtinger inequality approach, after constructing a new Lyapunov functional, the novel robust delay-dependent stability and stabilization criteria are developed. These improved results are expected to have less conservatism, due to the utilization of Wirtinger inequality and consideration of the information of the lower bound of time delay. Secondly, based on the obtained criteria, the memoryless H-infinity state feedback controller design scheme is presented, thus robust H-infinity controller design and performance analysis for uncertain linear system are developed. For a prescribed H performance level, the designed robust H-infinity controller can guarantee the uncertain linear system to be robustly stable and endure a larger delay. At last, numerical examples are provided to illustrate the effectiveness and superiority of the developed results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 52 条
[21]   Delay-Dependent Stability Control for Power System With Multiple Time-Delays [J].
Li, Jian ;
Chen, Zhaohui ;
Cai, Dongsheng ;
Zhen, Wei ;
Huang, Qi .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (03) :2316-2326
[22]   A New Model Transformation of Discrete-Time Systems With Time-Varying Delay and Its Application to Stability Analysis [J].
Li, Xianwei ;
Gao, Huijun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (09) :2172-2178
[23]   Improved results on delay-interval-dependent robust stability criteria for uncertain neutral-type systems with time-varying delays [J].
Liu, Pin-Lin .
ISA TRANSACTIONS, 2016, 60 :53-66
[24]   Results on stability of linear systems with time varying delay [J].
Liu, Yajuan ;
Park, Ju H. ;
Guo, Bao-Zhu .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (01) :129-134
[25]   Improved delay-dependent stability criteria for neutral systems with mixed interval time-varying delays and nonlinear disturbances [J].
Mohajerpoor, Reza ;
Shanmugam, Lakshmanan ;
Abdi, Hamid ;
Rakkiyappan, Rajan ;
Nahavandi, Saeid ;
Park, Ju H. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (02) :1169-1194
[26]   New delay-dependent exponential stability for neural networks with time delay [J].
Mou, Shaoshuai ;
Gao, Huijun ;
Qiang, Wenyi ;
Chen, Ke .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (02) :571-576
[27]   Stability of time-delay systems via Wirtinger-based double integral inequality [J].
Park, MyeongJin ;
Kwon, OhMin ;
Park, Ju H. ;
Lee, SangMoon ;
Cha, EunJong .
AUTOMATICA, 2015, 55 :204-208
[28]   Reciprocally convex approach to stability of systems with time-varying delays [J].
Park, PooGyeon ;
Ko, Jeong Wan ;
Jeong, Changki .
AUTOMATICA, 2011, 47 (01) :235-238
[29]   Wirtinger-based integral inequality: Application to time-delay systems [J].
Seuret, A. ;
Gouaisbaut, F. .
AUTOMATICA, 2013, 49 (09) :2860-2866
[30]   Delay-dependent state feedback stabilization for a networked control model with two additive input delays [J].
Shao, Hanyong ;
Zhang, Zhengqiang .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 :748-758