The Characterization and Optimization of GaN Cap Layers and SiN Cap Layers on AlGaN/GaN HEMT Structures Grown on 200mm GaN on Silicon

被引:22
作者
Charles, Matthew [1 ,2 ]
Baines, Yannick [1 ,2 ]
Bouis, Renan [1 ,2 ]
Papon, Anne-Marie [1 ,2 ]
机构
[1] Univ Grenoble Alpes, F-38000 Grenoble, France
[2] CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2018年 / 255卷 / 05期
关键词
AlGaN; capping layers; GaN; high electron mobility transistors; SiN; MOVPE; DEPOSITION;
D O I
10.1002/pssb.201700406
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have studied capping layers for AlGaN-based high electron mobility transistor (HEMT) structures, looking at different thicknesses of GaN, SiN, and GaN+SiN caps. SiN capping has no effect on the sheet resistance of the layers, as expected from a high quality amorphous passivation layer. GaN cap layers increase the sheet resistance whether combined with a SiN cap or not, a consequence of the polarisation charge present at the GaN/AlGaN interface. For both GaN and SiN caps on their own, we get excellent morphology from only 2nm thickness, with no degradation for layers up to 10nm thick. For GaN+SiN caps, we have a speckled morphology with lots of small holes, which transmission electron microscopy (TEM) analysis showed to be linked to holes created in the GaN layers before the deposition of SiN layers. We attribute this to the roughening effect of silane on GaN layers, known in the literature. Upon processing SiN capped and GaN+SiN capped layers into HEMT based heterojunction diode devices, the two have equivalent forward current, but GaN+SiN capping has greatly increased reverse current. We conclude that GaN+SiN is not an appropriate capping layer for AlGaN HEMT based diodes, compared with high quality in situ SiN passivation directly grown on the AlGaN.
引用
收藏
页数:5
相关论文
共 16 条
  • [1] Arulkumaran S., 2005, JPN J APPL PHYS, V44, P2593
  • [2] MOVPE growth of GaN on Si(111) substrates
    Dadgar, A
    Poschenrieder, M
    Bläsing, J
    Contreras, O
    Bertram, F
    Riemann, T
    Reiher, A
    Kunze, M
    Daumiller, I
    Krtschil, A
    Diez, A
    Kaluza, A
    Modlich, A
    Kamp, M
    Christen, J
    Ponce, FA
    Kohn, E
    Krost, A
    [J]. JOURNAL OF CRYSTAL GROWTH, 2003, 248 : 556 - 562
  • [3] Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer -: art. no. 054501
    Derluyn, J
    Boeykens, S
    Cheng, K
    Vandersmissen, R
    Das, J
    Ruythooren, W
    Degroote, S
    Leys, MR
    Germain, M
    Borghs, G
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 98 (05)
  • [4] Growth of thick GaN layers on 4-in. and 6-in. silicon (111) by metal-organic vapor phase epitaxy
    Frayssinet, Eric
    Cordier, Yvon
    Schenk, H. P. David
    Bavard, Alexis
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 5, 2011, 8 (05): : 1479 - 1482
  • [5] Grundmann M., 2006, BANDENG U CALIFORNIA
  • [6] Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures
    Heikman, S
    Keller, S
    Wu, Y
    Speck, JS
    DenBaars, SP
    Mishra, UK
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (12) : 10114 - 10118
  • [7] Sheet resistance measurement on AlGaN/GaN wafers and dispersion study
    Lehmann, J.
    Leroux, C.
    Charles, M.
    Torres, A.
    Morvan, E.
    Blachier, D.
    Ghibaudo, G.
    Bano, E.
    Reimbold, G.
    [J]. MICROELECTRONIC ENGINEERING, 2013, 109 : 334 - 337
  • [8] A New Method to Modify Two-Dimensional Electron Gas Density by GaN Cap Etching
    Li, Zhongda
    Chow, T. Paul
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (08)
  • [9] Moens P., 2014, IEEE INT S POW SEM D, P374
  • [10] Highlighting threading dislocations in MOVPE-grown GaN using an in situ treatment with SiH4 and NH3
    Oliver, RA
    Kappers, MJ
    Sumner, J
    Datta, R
    Humphreys, CJ
    [J]. JOURNAL OF CRYSTAL GROWTH, 2006, 289 (02) : 506 - 514