Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114

被引:33
作者
Mei, Jie [1 ,2 ,3 ]
Xu, Nan [1 ,2 ,3 ]
Ye, Chao [1 ,2 ,3 ]
Liu, Liming [1 ,2 ,3 ]
Wu, Jianrong [2 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, Lab Food Microbial Mfg Engn, Wuxi 214122, Jiangsu, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Corynebacterium glutamicum S9114; Genome-scale metabolic model; L-Glutamate production; gamma-Aminobutyrate production; L-Isoleucine production; L-ISOLEUCINE PRODUCTION; ANAPLEROTIC PATHWAYS; GLUTAMATE PRODUCTION; FLUX DISTRIBUTION; ACID PRODUCTION; CARBON-FLUX; SYNTHASE; GENE; PREDICTION; DATABASE;
D O I
10.1016/j.gene.2015.09.038
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Corynebacterium glutamicum S9114 is commonly used for industrial glutamate production. Therefore, a comprehensive understanding of the physiological and metabolic characteristics of C. glutamicum is important for developing its potential for industrial production. A genome-scale metabolic model, iJM658, was reconstructed based on genome annotation and literature mining. The model consists of 658 genes, 984 metabolites and 1065 reactions. The model quantitatively predicted C glutamicum growth on different carbon and nitrogen sources and determined 129 genes to be essential for cell growth. The iJM658 model predicted that C glutamicum had two glutamate biosynthesis pathways and lacked eight key genes in biotin synthesis. Robustness analysis indicated a relative low oxygen level (1.21 mmol/gDW/h) would improve glutamate production rate. Potential metabolic engineering targets for improving gamma-aminobutyrate and isoleucine production rate were predicted by in silico deletion or overexpression of some genes. The iJM658 model is a useful tool for understanding and optimizing the metabolism of C glutamicum and a valuable resource for future metabolic and physiological research. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:615 / 622
页数:8
相关论文
共 59 条
[1]   The RAST server: Rapid annotations using subsystems technology [J].
Aziz, Ramy K. ;
Bartels, Daniela ;
Best, Aaron A. ;
DeJongh, Matthew ;
Disz, Terrence ;
Edwards, Robert A. ;
Formsma, Kevin ;
Gerdes, Svetlana ;
Glass, Elizabeth M. ;
Kubal, Michael ;
Meyer, Folker ;
Olsen, Gary J. ;
Olson, Robert ;
Osterman, Andrei L. ;
Overbeek, Ross A. ;
McNeil, Leslie K. ;
Paarmann, Daniel ;
Paczian, Tobias ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Reich, Claudia ;
Stevens, Rick ;
Vassieva, Olga ;
Vonstein, Veronika ;
Wilke, Andreas ;
Zagnitko, Olga .
BMC GENOMICS, 2008, 9 (1)
[2]   Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory [J].
Becker, Judith ;
Wittmann, Christoph .
CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (04) :631-640
[3]   Corynebacterium glutamicum Tailored for Efficient Isobutanol Production [J].
Blombach, Bastian ;
Riester, Tanja ;
Wieschalka, Stefan ;
Ziert, Christian ;
Youn, Jung-Won ;
Wendisch, Volker F. ;
Eikmanns, Bernhard J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (10) :3300-3310
[4]   The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases [J].
Caspi, Ron ;
Altman, Tomer ;
Dreher, Kate ;
Fulcher, Carol A. ;
Subhraveti, Pallavi ;
Keseler, Ingrid M. ;
Kothari, Anamika ;
Krummenacker, Markus ;
Latendresse, Mario ;
Mueller, Lukas A. ;
Ong, Quang ;
Paley, Suzanne ;
Pujar, Anuradha ;
Shearer, Alexander G. ;
Travers, Michael ;
Weerasinghe, Deepika ;
Zhang, Peifen ;
Karp, Peter D. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D742-D753
[5]   Elementary mode analysis and metabolic flux analysis of L-glutamate biosynthesis by Corynebacterium glutamicum [J].
Chen, Ning ;
Du, Jun ;
Liu, Hui ;
Xu, Qingyang .
ANNALS OF MICROBIOLOGY, 2009, 59 (02) :317-322
[6]   Growth rate-dependent modulation of carbon flux through central metabolism and the kinetic consequences for glucose-limited chemostat cultures of Corynebacterium glutamicum [J].
CocaignBousquet, M ;
Guyonvarch, A ;
Lindley, ND .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (02) :429-436
[7]   Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose [J].
Dominguez, H ;
Rollin, C ;
Guyonvarch, A ;
Guerquin-Kern, JL ;
Cocaign-Bousquet, M ;
Lindley, ND .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 254 (01) :96-102
[8]   Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose [J].
Dominguez, H ;
Lindley, ND .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (10) :3878-3880
[9]   High-throughput generation, optimization and analysis of genome-scale metabolic models [J].
Henry, Christopher S. ;
DeJongh, Matthew ;
Best, Aaron A. ;
Frybarger, Paul M. ;
Linsay, Ben ;
Stevens, Rick L. .
NATURE BIOTECHNOLOGY, 2010, 28 (09) :977-U22
[10]   A mutation in the Corynebacterium glutamicum ItsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production [J].
Hirasawa, T ;
Wachi, M ;
Nagai, K .
JOURNAL OF BACTERIOLOGY, 2000, 182 (10) :2696-2701