Glial cells in amyotrophic lateral sclerosis

被引:162
|
作者
Philips, T. [1 ]
Rothstein, J. D. [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21205 USA
关键词
Astroglia; Microglia; Oligodendroglia; Inflammation; Excitotoxicity; RNA; Transporters; EAAT2; C9ORF72; MCT1; MOTOR-NEURON DEGENERATION; FRONTOTEMPORAL LOBAR DEGENERATION; TDP-43 TRANSGENIC MICE; MUTANT SOD1; ALS MICE; SCHWANN-CELLS; SPINAL-CORD; STEM-CELLS; REACTIVE ASTROGLIOSIS; MEDIATED MECHANISMS;
D O I
10.1016/j.expneurol.2014.05.015
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
For more than twenty years glial cells have been implicated in the pathogenetic cascades for genetic and sporadic forms of ALS. The biological role of glia, including the principal CNS glia, astroglia and oligodendroglia, as well as the myeloid derived microglia, has uniformly led to converging data sets that implicate these diverse cells in the degeneration of neurons in ALS. Originating as studies in postmortem human brain implicating astroglia, the research progressed to strongly implicate microglia and contributors to CNS injury in all forms of ALS. Most recently and unexpectedly, oligodendroglia have also been shown in animal model systems and human brain to play an early role in the dysfunction and death of ALS neurons. These studies have identified a number of diverse cellular cascades that could be, or have already been, the target of therapeutic interventions. Understanding the temporal and regional role of these cells and the magnitude of their contribution will be important for future interventions. Employing markers of these cell types may also allow for future important patient subgrouping and pharmacodynamic drug development tools. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 50 条
  • [41] Riluzole, Neuroprotection and Amyotrophic Lateral Sclerosis
    Cheah, B. C.
    Vucic, S.
    Krishnan, A. V.
    Kiernan, M. C.
    CURRENT MEDICINAL CHEMISTRY, 2010, 17 (18) : 1942 - 1959
  • [42] Genetics of familial amyotrophic lateral sclerosis
    Ticozzi, N.
    Tiloca, C.
    Morelli, C.
    Colombrita, C.
    Poletti, B.
    Doretti, A.
    Maderna, L.
    Messina, S.
    Ratti, A.
    Silani, V.
    ARCHIVES ITALIENNES DE BIOLOGIE, 2011, 149 (01): : 65 - 82
  • [43] Purinergic contribution to amyotrophic lateral sclerosis
    Volonte, Cinzia
    Apolloni, Savina
    Parisi, Chiara
    Amadio, Susanna
    NEUROPHARMACOLOGY, 2016, 104 : 180 - 193
  • [44] The review of the methods to obtain non-neuronal cells to study glial influence on Amyotrophic Lateral Sclerosis pathophysiology at molecular level in vitro
    Scorisa, Juliana Milani
    Duobles, Tatiana
    de Oliveira, Gabriela Pintar
    Maximino, Jessica Ruivo
    Chadi, Gerson
    ACTA CIRURGICA BRASILEIRA, 2010, 25 (03) : 281 - 289
  • [45] Immunological Aspects in Amyotrophic Lateral Sclerosis
    Maria Carolina O. Rodrigues
    Júlio C. Voltarelli
    Paul R. Sanberg
    Cesario V. Borlongan
    Svitlana Garbuzova-Davis
    Translational Stroke Research, 2012, 3 : 331 - 340
  • [46] Amyotrophic Lateral Sclerosis: A Diet Review
    D'Antona, Salvatore
    Caramenti, Martina
    Porro, Danilo
    Castiglioni, Isabella
    Cava, Claudia
    FOODS, 2021, 10 (12)
  • [47] The endocannabinoid system in amyotrophic lateral sclerosis
    Bilsland, Lynsey G.
    Greensmith, Linda
    CURRENT PHARMACEUTICAL DESIGN, 2008, 14 (23) : 2306 - 2316
  • [48] Amyotrophic Lateral Sclerosis
    Kollewe, K.
    Petri, S.
    KLINISCHE NEUROPHYSIOLOGIE, 2009, 40 (01) : 3 - 13
  • [49] Amyotrophic Lateral Sclerosis, Neuroinflammation, and Cromolyn
    Theoharides, Theoharis C.
    Tsilioni, Irene
    CLINICAL THERAPEUTICS, 2020, 42 (03) : 546 - 549
  • [50] Redox Regulation in Amyotrophic Lateral Sclerosis
    Parakh, Sonam
    Spencer, Damian M.
    Halloran, Mark A.
    Soo, Kai Y.
    Atkin, Julie D.
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2013, 2013