Gaining understanding of multivariate and multidimensional data through visualization

被引:46
作者
dos Santos, S [1 ]
Brodlie, K [1 ]
机构
[1] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
来源
COMPUTERS & GRAPHICS-UK | 2004年 / 28卷 / 03期
关键词
visualization; multidimensional; multivariate; reference model;
D O I
10.1016/j.cag.2004.03.013
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
High dimensionality is a major challenge for data visualization. Parameter optimization problems require an understanding of the behaviour of the objective function in the n-dimensional space around the optimum - this is multidimensional visualization and is the traditional domain of scientific visualization. Large data tables require us to understand the relationship between attributes in the table - this is multivariate visualization and is an important aspect of information visualization. Common to both types of 'high-dimensional' visualization is a need to reduce the dimensionality for display. In this paper we present a uniform approach to the filtering of both multidimensional and multivariate data, to allow extraction of data subject to constraints on their position or value within an n-dimensional window, and on choice of dimensions for display. A simple example of understanding the trajectory of solutions from an optimization algorithm is given - this involves a combination of multidimensional and multivariate data. © 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 27 条
[1]   PLOTS OF HIGH-DIMENSIONAL DATA [J].
ANDREWS, DF .
BIOMETRICS, 1972, 28 (01) :125-&
[2]  
[Anonymous], 1993, Visualizing Data
[3]   BRUSHING SCATTERPLOTS [J].
BECKER, RA ;
CLEVELAND, WS .
TECHNOMETRICS, 1987, 29 (02) :127-142
[4]   USE OF FACES TO REPRESENT POINTS IN K-DIMENSIONAL SPACE GRAPHICALLY [J].
CHERNOFF, H .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (342) :361-368
[5]   A taxonomy of visualization techniques using the data state reference model [J].
Chi, EH .
IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2000, 2000, :69-75
[6]  
CONN AR, 1988, MATH COMPUT, V50, P399, DOI 10.1090/S0025-5718-1988-0929544-3
[7]  
dos Santos S. R., 2002, P JOINT EUR IEEE TVG, P173
[8]  
FEINER S, 1990, P ACM S US INT SOFTW, P76
[9]  
Haber RB., 1990, VISUALIZATION SCI CO, V74, P93
[10]   Large datasets at a glance: Combining textures and colors in scientific visualization [J].
Healey, CG ;
Enns, JT .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1999, 5 (02) :145-167