Drop-on-demand satellite-free drop formation for precision fluid delivery

被引:21
作者
Yang, Lisong [1 ]
Kapur, Nik [2 ]
Wang, Yiwei [2 ]
Fiesser, Fritz [3 ]
Bierbrauer, Frank [2 ]
Wilson, Mark C. T. [2 ]
Sabey, Tim [4 ]
Bain, Colin D. [1 ]
机构
[1] Univ Durham, Dept Chem, Stockton Rd, Durham DH1 3LE, England
[2] Univ Leeds, Sch Mech Engn, Leeds LS2 9JT, W Yorkshire, England
[3] GlaxoSmithKline, Philadelphia, PA 19426 USA
[4] GlaxoSmithKline, Barnard Castle DL12 8DT, Durham, England
关键词
Drop-on-demand; Satellite; Flow rate; Newtonian and Non-Newtonian fluid; Digital printing; FREE-SURFACE FLOWS; LIQUID JET; DYNAMICS; BREAKUP;
D O I
10.1016/j.ces.2018.04.014
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A drop-on-demand liquid dispensing system, based on a rotary piston pump, for delivering microlitre droplets at similar to 10 Hz is analysed. Five types of drop formation are observed under different pump operation schemes, characterised by the breakup behaviour of the thin liquid ligament that develops between the forming drop and the liquid remaining at the dispensing nozzle. A range of control parameters and fluids (Newtonian and non-Newtonian) have been explored in order to identify key system parameters for precise satellite-free drop formation and hence to establish an operating window. Under a conventional 'one-step-ejection' pump operation cycle, the window for satellite-free drop production is found to be small and impractical due to the long ligament and large pendant drop at the nozzle. The satellite-free operating window can be expanded dramatically with the ligament and pendant drop size under control with a novel 'two-step-ejection' process, in which the drop is first partly grown, then allowed to settle, and then ejected via a second pulse of liquid from the pump. Rapid deceleration of the pump near the maximum flow rate at the end of the second pulse is essential for satellite-free drop production. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 115
页数:14
相关论文
共 26 条
[1]   Small-scale free surface flows with breakup: Drop formation and emerging applications [J].
Basaran, OA .
AICHE JOURNAL, 2002, 48 (09) :1842-1848
[2]   Ink-jet printing of carbon nanotube thin film transistors [J].
Beecher, P. ;
Servati, P. ;
Rozhin, A. ;
Colli, A. ;
Scardaci, V. ;
Pisana, S. ;
Hasan, T. ;
Flewitt, A. J. ;
Robertson, J. ;
Hsieh, G. W. ;
Li, F. M. ;
Nathan, A. ;
Ferrari, A. C. ;
Milne, W. I. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (04)
[3]   Measurement of surface and interfacial tension using pendant drop tensiometry [J].
Berry, Joseph D. ;
Neeson, Michael J. ;
Dagastine, Raymond R. ;
Chan, Derek Y. C. ;
Tabor, Rico F. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 454 :226-237
[4]   Human apoE Isoforms Differentially Regulate Brain Amyloid-β Peptide Clearance [J].
Castellano, Joseph M. ;
Kim, Jungsu ;
Stewart, Floy R. ;
Jiang, Hong ;
DeMattos, Ronald B. ;
Patterson, Bruce W. ;
Fagan, Anne M. ;
Morris, John C. ;
Mawuenyega, Kwasi G. ;
Cruchaga, Carlos ;
Goate, Alison M. ;
Bales, Kelly R. ;
Paul, Steven M. ;
Bateman, Randall J. ;
Holtzman, David M. .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (89)
[5]   Dynamic nozzles for drop generators [J].
Castrejon-Pita, J. R. ;
Willis, S. J. ;
Castrejon-Pita, A. A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (11)
[6]   A simple large-scale droplet generator for studies of inkjet printing [J].
Castrejon-Pita, J. R. ;
Martin, G. D. ;
Hoath, S. D. ;
Hutchings, I. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (07)
[7]   NON-LINEAR CAPILLARY INSTABILITY OF A LIQUID JET .3. EXPERIMENTS ON SATELLITE DROP FORMATION AND CONTROL [J].
CHAUDHARY, KC ;
MAXWORTHY, T .
JOURNAL OF FLUID MECHANICS, 1980, 96 (JAN) :287-&
[8]  
Clarke A., 2013, Patent application, Patent No. [61/ 790508, 61790508]
[9]   An experimental study of drop-on-demand drop formation [J].
Dong, Hongming ;
Carr, Wallace W. ;
Morris, Jeffrey F. .
PHYSICS OF FLUIDS, 2006, 18 (07)
[10]   Drop formation - an overview [J].
Eggers, J .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (06) :400-410