Rational Curves on Hyperkahler Manifolds

被引:41
作者
Amerik, E. [1 ]
Verbitsky, M. [1 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Lab Algebra Geometry, Dept Math, Moscow, Russia
关键词
1ST CHERN CLASS; KAHLER CONE; COMPACT; DIVISORS; TORELLI;
D O I
10.1093/imrn/rnv133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an irreducible holomorphically symplectic manifold. We show that all faces of the Kahler cone of M are hyperplanes H-i orthogonal to certain homology classes, called monodromy birationally minimal (MBM) classes. Moreover, the Kahler cone is a connected component of a complement of the positive cone to the union of all H-i. We provide several characterizations of the MBM classes. We show the invariance of MBM property by deformations, as long as the class in question stays of type (1, 1). For hyperkahler manifolds with Picard group generated by a negative class z, we prove that +/-z is Q-effective if and only if it is an MBM class. We also prove some results toward the Morrison-Kawamata cone conjecture for hyperkahler manifolds.
引用
收藏
页码:13009 / 13045
页数:37
相关论文
共 36 条
[1]  
Bayer A., 2013, ARXIV13072291
[2]  
BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755
[3]  
Besse A. L., 1987, EINSTEIN MANIFOLDS
[4]  
Bogomolov F., 1978, SOV MATH DOKL, V19, P1462
[5]  
Bogomolov Fedor A., 1974, Math. USSR Sb., V22, P580, DOI [10.1070/SM1974v022n04ABEH001706, DOI 10.1070/SM1974V022N04ABEH001706]
[6]   DIFFEOMORPHISMS OF A K3 SURFACE [J].
BORCEA, C .
MATHEMATISCHE ANNALEN, 1986, 275 (01) :1-4
[7]   Divisorial Zariski decompositions on compact complex manifolds [J].
Boucksom, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (01) :45-76
[8]   The Kahler cone of a hyperkahler manifold [J].
Boucksom, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (10) :935-938
[9]   Compact Kahler surfaces with trivial canonical bundle [J].
Buchdahl, N .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (02) :189-204
[10]   ALGEBRAIC COREDUCTION OF A COMPACT WEAKLY KAHLER ANALYTICAL SPACE [J].
CAMPANA, F .
INVENTIONES MATHEMATICAE, 1981, 63 (02) :187-223