BAYESIAN COMPRESSIVE SENSING USING MONTE CARLO METHODS

被引:0
作者
Kyriakides, Ioannis [1 ]
Pribic, Radmila [2 ]
机构
[1] Univ Nicosia, Dept Elect Engn, Nicosia, Cyprus
[2] Thales Nederland Delft, Sensors Adv Dev, Delft, Netherlands
来源
2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2013年
关键词
Bayesian compressive sensing; sparse reconstruction; Monte Carlo methods; SIGNAL RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of reconstructing a signal from compressively sensed measurements is solved in this work from a Bayesian perspective. The proposed reconstruction solution differs from previous Bayesian methods in that it numerically evaluates the posterior of the sparse solution. This allows the method to utilize any kind of information on the signal without the need to evaluate the posterior in closed form. Specifically, the method uses multi-stage sampling together with a greedy subroutine to efficiently draw information directly from the likelihood and any prior distribution on the signal, including a sparsity prior. The approach is shown to accurately represent the Bayesian belief on the sparse solution based on noisy compressively sensed signals.
引用
收藏
页数:5
相关论文
共 19 条
[1]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[2]   Bayesian Compressive Sensing Using Laplace Priors [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (01) :53-63
[3]   IEEE-SPS and connexions - An open access education collaboration [J].
Baraniuk, Richard G. ;
Burrus, C. Sidney ;
Thierstein, E. Joel .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) :6-+
[4]   A Doppler statistic for zero autocorrelation waveforms [J].
Benedetto, John J. ;
Donatelli, Jeffrey ;
Konstantinidis, Ioannis ;
Shaw, Christopher .
2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, :1403-1407
[5]  
Bjorck G., 1990, P NATO ADV STUDY I R, V131-140
[6]  
Candes E. J., 2006, P INT C MATH MADR SP, V3, P1433, DOI DOI 10.4171/022-3/69
[7]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[8]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[9]   Particle Filter Theory and Practice with Positioning Applications [J].
Gustafsson, Fredrik .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2010, 25 (07) :53-81
[10]   Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation [J].
Haupt, Jarvis ;
Castro, Rui M. ;
Nowak, Robert .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) :6222-6235