Thermal transport in composites of self-assembled nickel nanoparticles embedded in yttria stabilized zirconia

被引:3
作者
Shukla, Nitin C. [1 ]
Liao, Hao-Hsiang [1 ]
Abiade, Jeremiah T. [1 ,2 ]
Murayama, Mitsuhiro [3 ]
Kumar, Dhananjay [4 ,5 ,6 ]
Huxtable, Scott T. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA
[3] Virginia Polytech Inst & State Univ, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA
[4] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA
[5] N Carolina Agr & Tech State Univ, CAMSS, Greensboro, NC 27411 USA
[6] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
multilayers; nanoparticles; nickel; pulsed laser deposition; thermal conductivity; yttrium compounds; zirconium compounds; CONDUCTIVITY; NANOSCALE; DENSE;
D O I
10.1063/1.3116715
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the effect of nickel nanoparticle size on thermal transport in multilayer nanocomposites consisting of alternating layers of nickel nanoparticles and yttria stabilized zirconia (YSZ) spacer layers that are grown with pulsed laser deposition. Using time-domain thermoreflectance, we measure thermal conductivities of k=1.8, 2.4, 2.3, and 3.0 W m(-1) K-1 for nanocomposites with nickel nanoparticle diameters of 7, 21, 24, and 38 nm, respectively, and k=2.5 W m(-1) K-1 for a single 80 nm thick layer of YSZ. We use an effective medium theory to estimate the lower limits for interface thermal conductance G between the nickel nanoparticles and the YSZ matrix (G>170 MW m(-2) K-1), and nickel nanoparticle thermal conductivity.
引用
收藏
页数:3
相关论文
共 22 条
[1]   Structural and magnetic properties of self-assembled nickel nanoparticles in a yttria stabilized zirconia matrix [J].
Abiade, J. T. ;
Miao, G. X. ;
Gupta, A. ;
Gapud, A. A. ;
Kumar, D. .
THIN SOLID FILMS, 2008, 516 (08) :2082-2086
[2]   The effect of matrix and substrate on the coercivity and blocking temperature of self-assembled Ni nanoparticles [J].
Abiade, Jeremiah T. ;
Oh, Sang Ho ;
Kumar, Dhananjay ;
Varela, Maria ;
Pennycook, Stephen ;
Guo, Haizhong ;
Gupta, Arunava ;
Sankar, Jagannathan .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (07)
[3]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[4]   Nanoparticle polymer composites: Where two small worlds meet [J].
Balazs, Anna C. ;
Emrick, Todd ;
Russell, Thomas P. .
SCIENCE, 2006, 314 (5802) :1107-1110
[6]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[7]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[8]   Thermal conductance of epitaxial interfaces [J].
Costescu, RM ;
Wall, MA ;
Cahill, DG .
PHYSICAL REVIEW B, 2003, 67 (05)
[9]   Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J].
Decher, G .
SCIENCE, 1997, 277 (5330) :1232-1237
[10]   THE EFFECT OF PARTICLE-SIZE ON THE THERMAL-CONDUCTIVITY OF ZNS DIAMOND COMPOSITES [J].
EVERY, AG ;
TZOU, Y ;
HASSELMAN, DPH ;
RAJ, R .
ACTA METALLURGICA ET MATERIALIA, 1992, 40 (01) :123-129