Extension of resonant cavity-enhanced photodetection into the MWIR and LWIR ranges using a Ga-free type-II strained-layer superlattice

被引:1
作者
Letka, Veronica [1 ]
Bainbridge, Andrew [1 ]
Craig, Adam P. [1 ]
Al-Saymari, F. [1 ]
Marshall, Andrew R. J. [1 ]
机构
[1] Univ Lancaster, Phys Dept, Lancaster LA1 4YB, England
来源
INFRARED TECHNOLOGY AND APPLICATIONS XLVI | 2020年 / 11407卷
关键词
resonant cavity-enhanced photodetector; MWIR; LWIR; superlattice; nBn; InAs/InAsSb; gas detection;
D O I
10.1117/12.2557508
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Resonant cavity-enhanced photodetectors (RCE PDs) present a compelling alternative to broadband detection techniques in the field of gas detection and environmental sensing, due to the distinctive narrow-band absorption fingerprints of gases such as N2O (at 4.5 mu m) or CO (4.6 mu m). This characteristic aligns well with the operational mode of an RCE PD, whose VCSEL-like architecture results in a tuneable narrow-band spectral response with a significantly enhanced quantum efficiency. Additionally, unlike broadband detectors, RCE PDs are not subject to the broadband BLIP limit due to their high spectral selectivity, while the substantially reduced absorber volume offers commensurately reduced Auger and generation-recombination dark current densities. In this work, we present efforts to extend the operability of these structures beyond 4.0 mu m wavelength by employing the type-II InAs/InAsSb superlattice as the absorber material. The tuneable bandgap of this structure allows to achieve and demonstrate a MWIR RCE PD with a highly thermally stable resonant response at similar to 4.45 mu m, a Q factor of 85-95, full-width-at-half-maximum of similar to 50 nm and a peak quantum efficiency of 84% at 240 K - features which are promising for detection of gases such as CO and N2O. The broadband BLIP is also achieved at 180 K, a result which could potentially enable thermoelectrically cooled operation in the future. Finally, thanks to the inherent bandgap tunability of the InAs/InAsSb superlattice, extension of resonant response into the LWIR range is achievable with relatively straightforward changes to the already existing RCE PD structure.
引用
收藏
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 2019, Inventory of U.S. Greenhouse Gas Emissions and Sinks
[2]   Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 μm [J].
Canedy, Chadwick L. ;
Bewley, William W. ;
Merritt, Charles D. ;
Kim, Chul Soo ;
Kim, Mijin ;
Warren, Michael V. ;
Jackson, Eric M. ;
Nolde, Jill A. ;
Affouda, C. A. ;
Aifer, Edward H. ;
Vurgaftman, Igor ;
Meyer, Jerry R. .
OPTICS EXPRESS, 2019, 27 (03) :3771-3781
[3]   Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared [J].
Craig, A. P. ;
Al-Saymari, F. ;
Jain, M. ;
Bainbridge, A. ;
Savich, G. R. ;
Golding, T. ;
Krier, A. ;
Wicks, G. W. ;
Marshall, A. R. .
APPLIED PHYSICS LETTERS, 2019, 114 (15)
[4]   The HITRAN2016 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hill, C. ;
Kochanov, R. V. ;
Tan, Y. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V. ;
Campargue, A. ;
Chance, K. V. ;
Drouin, B. J. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Perevalov, V. I. ;
Perrin, A. ;
Shine, K. P. ;
Smith, M. -A. H. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Barbe, A. ;
Csaszar, A. G. ;
Devi, V. M. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J. -M. ;
Jolly, A. ;
Johnson, T. J. ;
Karman, T. ;
Kleiner, I. ;
Kyuberis, A. A. ;
Loos, J. ;
Lyulin, O. M. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Moazzen-Ahmadi, N. ;
Mueller, H. S. P. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Polyansky, O. L. ;
Rey, M. ;
Rotger, M. ;
Sharpe, S. W. ;
Sung, K. ;
Starikova, E. ;
Tashkun, S. A. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 :3-69
[5]   λ≈3 μm InAs resonant-cavity-enhanced photodetector [J].
Green, AM ;
Gevaux, DG ;
Roberts, C ;
Stavrinou, PN ;
Phillips, CC .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (11) :964-967
[6]   High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection [J].
Hoang, A. M. ;
Chen, G. ;
Chevallier, R. ;
Haddadi, A. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2014, 104 (25)
[7]   Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices [J].
Hoeglund, L. ;
Ting, D. Z. ;
Soibel, A. ;
Fisher, A. ;
Khoshakhlagh, A. ;
Hill, C. J. ;
Baker, L. ;
Keo, S. ;
Mumolo, J. ;
Gunapala, S. D. .
INFRARED PHYSICS & TECHNOLOGY, 2015, 70 :62-65
[8]   Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices [J].
Hoeglund, L. ;
Ting, D. Z. ;
Khoshakhlagh, A. ;
Soibel, A. ;
Hill, C. J. ;
Fisher, A. ;
Keo, S. ;
Gunapala, S. D. .
APPLIED PHYSICS LETTERS, 2013, 103 (22)
[9]  
*I COBL SOC, NIST CHEM WEBBOOK
[10]   Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices [J].
Kim, H. S. ;
Cellek, O. O. ;
Lin, Zhi-Yuan ;
He, Zhao-Yu ;
Zhao, Xin-Hao ;
Liu, Shi ;
Li, H. ;
Zhang, Y. -H. .
APPLIED PHYSICS LETTERS, 2012, 101 (16)