Bivariate Classification of Malware in Java']JavaScript using Dynamic Analysis

被引:0
作者
Gupta, Yash [1 ]
Bansal, Divya [1 ]
Sofat, Sanjeev [1 ]
机构
[1] PEC Univ Technol, Chandigarh, India
来源
PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013) | 2013年 / 52卷
关键词
malicious [!text type='Java']Java[!/text]Script; dynamic analysis; classification; caffeine monkey;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
JavaScript is used as an attack vector to infect webpages to gain access to user's information. We present a tool that will dynamically analyze and perform bivariate classification of webpages as malicious or benign. We categorized the general behavior of JavaScript using datasets of known benign and malicious JavaScript by using a classifier which is trained on the basis of difference between function calls made by malicious and benign JavaScript and identification of Iframe tag in them. A Script is then matched to those categorizations to classify its behavior as malicious or benign. Here we have developed a light weight malicious JavaScript detection approach which can be used in real time as most of the existing techniques perform offline analysis.
引用
收藏
页码:178 / 182
页数:5
相关论文
共 50 条
  • [31] Classification and Analysis of Android Malware Images Using Feature Fusion Technique
    Singh, Jaiteg
    Thakur, Deepak
    Gera, Tanya
    Shah, Babar
    Abuhmed, Tamer
    Ali, Farman
    IEEE ACCESS, 2021, 9 : 90102 - 90117
  • [32] Malware detection and classification using community detection and social network analysis
    Reddy, Varshini
    Kolli, Naimisha
    Balakrishnan, N.
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2021, 17 (04) : 333 - 346
  • [33] Dynamic Android Malware Category Classification using Semi-Supervised Deep Learning
    Mahdavifar, Samaneh
    Kadir, Andi Fitriah Abdul
    Fatemi, Rasool
    Alhadidi, Dima
    Ghorbani, Ali A.
    2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 515 - 522
  • [34] Dynamic API call sequence visualisation for malware classification
    Tang, Mingdong
    Qian, Quan
    IET INFORMATION SECURITY, 2019, 13 (04) : 367 - 377
  • [35] Detection and Mitigation Of Malicious Java']JavaScript Using Information Flow Control
    Sayed, Bassam
    Traore, Issa
    Abdelhalim, Amany
    2014 TWELFTH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST (PST), 2014, : 264 - 273
  • [36] Combining Static and Dynamic Analysis to Improve Machine Learning-based Malware Classification
    Chanajitt, Rajchada
    Pfahringer, Bernhard
    Gomes, Heitor Murilo
    2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [37] Orchestrating Dynamic Analyses of Distributed Processes for Full-Stack Java']JavaScript Programs
    Christophe, Laurent
    De Roover, Coen
    Boix, Elisa Gonzalez
    De Meuter, Wolfgang
    PROCEEDINGS OF THE 17TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON GENERATIVE PROGRAMMING: CONCEPTS AND EXPERIENCES (GPCE'18), 2018, : 107 - 118
  • [38] Efficient dynamic malware analysis using virtual time control mechanics
    Lin, Chih-Hung
    Pao, Hsing-Kuo
    Liao, Jian-Wei
    COMPUTERS & SECURITY, 2018, 73 : 359 - 373
  • [39] Probabilistic analysis of dynamic malware traces
    Stiborek, Jan
    Pevny, Tomas
    Rehak, Martin
    COMPUTERS & SECURITY, 2018, 74 : 221 - 239
  • [40] Using Hidden Markov Model for Dynamic Malware Analysis: First Impressions
    Imran, Mohammad
    Afzal, Muhammad Tanvir
    Qadir, Muhammad Abdul
    2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2015, : 816 - 821