G-torsors in p-adic Hodge theory

被引:6
作者
Fargues, Laurent [1 ]
机构
[1] Inst Math Jussieu, CNRS, 4 Pl Jussieu, F-75252 Paris, France
关键词
p-adic Hodge theory; reduction theory; principal G-bundles; ISOCRYSTALS; COHOMOLOGY; REDUCTION; BUNDLES;
D O I
10.1112/S0010437X20007423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a reductive group G over a finite extension of Q(p) we classify the G-bundles over the curve introduced in Fargues and Fontaine [Courbes et fibr ' es vectoriels en th ' eorie de Hodge p-adique, Ast ' erisque 406 (2018)]. The result is interpreted in terms of Kottwitz set B(G). We moreover compute the ' etale cohomology of the curve with torsion coefficients and relate the result to local class field theory.
引用
收藏
页码:2076 / 2110
页数:35
相关论文
共 34 条
[1]  
[Anonymous], 2012, AMSIP STUD ADV MATH
[2]  
[Anonymous], 1968, PUBLICATIONS U NANCA
[3]  
[Anonymous], ASTERISQUE
[4]  
[Anonymous], 2002, AZUMINO ADV STUD PUR
[5]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[6]   SEMI-STABILITY OF REDUCTIVE GROUP SCHEMES OVER CURVES [J].
BEHREND, KA .
MATHEMATISCHE ANNALEN, 1995, 301 (02) :281-305
[7]   Harder-Narasimhan reduction of a principal bundle [J].
Biswas, I ;
Holla, YI .
NAGOYA MATHEMATICAL JOURNAL, 2004, 174 :201-223
[8]  
Borovoi M, 1998, MEM AM MATH SOC, V132, P1
[9]  
Cornut C., MEM AM MATH SOC
[10]  
Dat J.-F., 2010, CAMBRIDGE TRACTS MAT, V183