High-κ dielectric breakdown in nanoscale logic devices - Scientific insight and technology impact

被引:34
作者
Raghavan, Nagarajan [1 ]
Pey, Kin Leong [1 ]
Shubhakar, Kalya [1 ]
机构
[1] SUTD, Singapore 738682, Singapore
关键词
INDUCED LEAKAGE CURRENT; GATE DIELECTRICS; WORK FUNCTION; MODEL; SIO2; DEGRADATION; PHYSICS; MEMORY;
D O I
10.1016/j.microrel.2014.02.013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dielectric breakdown is one of the key failure mechanisms in front-end silicon-based complementary metal oxide semiconductor (CMOS) technology. With the advent of HfO2-based high-kappa dielectrics replacing SiO2 and metal gate replacing polysilicon and silicides, the physics of defect generation and breakdown of the oxide has changed significantly, although the mechanisms governing operation of the transistor remain essentially the same. Given the progression towards ultra-thin dielectric films with physical thickness similar to 1-2 nm, the overall breakdown process has shifted from a single catastrophic hard breakdown (HBD) event to include various regimes such as soft breakdown (SBD) and progressive (post) breakdown (PBD) which in itself consists of a digital phase with random telegraph noise (RTN) fluctuations and stable average leakage current and an analog phase with gradual wear-out and lateral dilation of the percolation path resulting in a monotonic increase in leakage current. In order to better design and optimize the logic gate stack for enhancing its robustness and immunity to breakdown, it is essential to understand the driving forces and physical mechanisms behind the different phases of dielectric failure. This review is dedicated to the scientific understanding of the various regimes of breakdown in high-x gate stacks using electrical, physical and statistical techniques along with an application of these findings to predict the impact they will have from a technology perspective. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:847 / 860
页数:14
相关论文
共 74 条
[1]  
[Anonymous], 2011, IEEE ANN INT S REL P
[2]   The effect of interfacial layer properties on the performance of Hf-based gate stack devices [J].
Bersuker, G. ;
Park, C. S. ;
Barnett, J. ;
Lysaght, P. S. ;
Kirsch, P. D. ;
Young, C. D. ;
Choi, R. ;
Lee, B. H. ;
Foran, B. ;
van Benthem, K. ;
Pennycook, S. J. ;
Lenahan, P. M. ;
Ryan, J. T. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (09)
[3]   Mechanism of high-k dielectric-induced breakdown of the interfacial SiO2 layer [J].
Bersuker, G. ;
Heh, D. ;
Young, C. D. ;
Morassi, L. ;
Padovani, A. ;
Larcher, L. ;
Yew, K. S. ;
Ong, Y. C. ;
Ang, D. S. ;
Pey, K. L. ;
Taylor, W. .
2010 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2010, :373-378
[4]  
Bersuker G., 2008, Electron Devices Meet- ing, P1
[5]   A model for multistep trap-assisted tunneling in thin high-k dielectrics -: art. no. 044107 [J].
Blank, O ;
Reisinger, H ;
Stengl, R ;
Gutsche, M ;
Wiest, F ;
Capodieci, V ;
Schulze, J ;
Eisele, I .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (04)
[6]   Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance [J].
Brunco, D. P. ;
De Jaeger, B. ;
Eneman, G. ;
Mitard, J. ;
Hellings, G. ;
Satta, A. ;
Terzieva, V. ;
Souriau, L. ;
Leys, F. E. ;
Pourtois, G. ;
Houssa, M. ;
Winderickx, G. ;
Vrancken, E. ;
Sioncke, S. ;
Opsomer, K. ;
Nicholas, G. ;
Caymax, M. ;
Stesmans, A. ;
Van Steenbergen, J. ;
Mertens, P. W. ;
Meuris, M. ;
Heyns, M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) :H552-H561
[7]   Stress-Induced Leakage Current and Defect Generation in nFETs with HfO2/TiN Gate Stacks during Positive-Bias Temperature Stress [J].
Cartier, Eduard ;
Kerber, Andreas .
2009 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, VOLS 1 AND 2, 2009, :486-+
[8]   Work function tuning via interface dipole by ultrathin reaction layers using AlTa and AlTaN alloys [J].
Chen, Bei ;
Jha, Rashmi ;
Misra, Veena .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (09) :731-733
[9]   Interfacial-Layer-Driven Dielectric Degradation and Breakdown of HfSiON/SiON Gate Dielectric nMOSFETs [J].
Choi, Do-Young ;
Lee, Kyong Taek ;
Baek, Chang-Ki ;
Sohn, Chang Woo ;
Sagong, Hyun Chul ;
Jung, Eui-Young ;
Lee, Jeong-Soo ;
Jeong, Yoon-Ha .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (10) :1319-1321
[10]  
Choi Yang-Kyu., 2001, IEDM, P421, DOI DOI 10.1109/IEDM.2001.979526