Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity

被引:100
|
作者
Chang, Hao-Xun [1 ,3 ]
Haudenshield, James S. [1 ,2 ]
Bowen, Charles R. [1 ,2 ]
Hartman, Glen L. [1 ,2 ]
机构
[1] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA
[2] USDA ARS, Urbana, IL 61801 USA
[3] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA
关键词
machine learning; metagenome-wide association study; microbiome; nitrogen fixation; productivity random forest; rhizobium; soybeans; SOYBEAN GLYCINE-MAX; RHIZOSPHERE MICROBIOME; NITROGEN-FIXATION; COMMUNITIES; BACTERIAL; DIVERSITY; STRAINS; GROWTH; YIELD;
D O I
10.3389/fmicb.2017.00519
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more actinobacteria, ascomycota, planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study.
引用
收藏
页数:11
相关论文
共 34 条
  • [1] OMARU: a robust and multifaceted pipeline for metagenome-wide association study
    Kishikawa, Toshihiro
    Tomofuji, Yoshihiko
    Inohara, Hidenori
    Okada, Yukinori
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (01)
  • [2] A metagenome-wide association study of gut microbiota in type 2 diabetes
    Qin, Junjie
    Li, Yingrui
    Cai, Zhiming
    Li, Shenghui
    Zhu, Jianfeng
    Zhang, Fan
    Liang, Suisha
    Zhang, Wenwei
    Guan, Yuanlin
    Shen, Dongqian
    Peng, Yangqing
    Zhang, Dongya
    Jie, Zhuye
    Wu, Wenxian
    Qin, Youwen
    Xue, Wenbin
    Li, Junhua
    Han, Lingchuan
    Lu, Donghui
    Wu, Peixian
    Dai, Yali
    Sun, Xiaojuan
    Li, Zesong
    Tang, Aifa
    Zhong, Shilong
    Li, Xiaoping
    Chen, Weineng
    Xu, Ran
    Wang, Mingbang
    Feng, Qiang
    Gong, Meihua
    Yu, Jing
    Zhang, Yanyan
    Zhang, Ming
    Hansen, Torben
    Sanchez, Gaston
    Raes, Jeroen
    Falony, Gwen
    Okuda, Shujiro
    Almeida, Mathieu
    LeChatelier, Emmanuelle
    Renault, Pierre
    Pons, Nicolas
    Batto, Jean-Michel
    Zhang, Zhaoxi
    Chen, Hua
    Yang, Ruifu
    Zheng, Weimou
    Li, Songgang
    Yang, Huanming
    NATURE, 2012, 490 (7418) : 55 - 60
  • [3] Description and determinants of the faecal resistome and microbiome of farmers and slaughterhouse workers: A metagenome-wide cross-sectional study
    Van Gompel, Liese
    Luiken, Roosmarijn E. C.
    Hansen, Rasmus B.
    Munk, Patrick
    Bouwknegt, Martijn
    Heres, Lourens
    Greve, Gerdit D.
    Scherpenisse, Peter
    Jongerius-Gortemaker, Betty G. M.
    Tersteeg-Zijderveld, Monique H. G.
    Garcia-Cobos, Silvia
    Dohmen, Wietske
    Dorado-Garcia, Alejandro
    Wagenaar, Jaap A.
    Urlings, Bert A. P.
    Aarestrup, Frank M.
    Mevius, Dik J.
    Heederik, Dick J. J.
    Schmitt, Heike
    Bossers, Alex
    Smit, Lidwien A. M.
    ENVIRONMENT INTERNATIONAL, 2020, 143
  • [4] A Metagenome-Wide Association Study and Arrayed Mutant Library Confirm Acetobacter Lipopolysaccharide Genes Are Necessary for Association with Drosophila melanogaster
    White, K. Makay
    Matthews, Melinda K.
    Hughes, Rachel C.
    Sommer, Andrew J.
    Griffitts, Joel S.
    Newell, Peter D.
    Chaston, John M.
    G3-GENES GENOMES GENETICS, 2018, 8 (04): : 1119 - 1127
  • [5] Crop Yield Prediction Using Machine Learning Approaches on a Wide Spectrum
    Joshua, S. Vinson
    Priyadharson, A. Selwin Mich
    Kannadasan, Raju
    Khan, Arfat Ahmad
    Lawanont, Worawat
    Khan, Faizan Ahmed
    Rehman, Ateeq Ur
    Ali, Muhammad Junaid
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5663 - 5679
  • [6] Human limits in machine learning: prediction of potato yield and disease using soil microbiome data
    Aghdam, Rosa
    Tang, Xudong
    Shan, Shan
    Lankau, Richard
    Solis-Lemus, Claudia
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [7] Leveraging Scheme for Cross-Study Microbiome Machine Learning Prediction and Feature Evaluations
    Song, Kuncheng
    Zhou, Yi-Hui
    BIOENGINEERING-BASEL, 2023, 10 (02):
  • [8] Prediction of the right crop for the right soil and recommendation of fertiliser usage by machine learning algorithm
    Rubini, P. E.
    Kavitha, P.
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2022, 69 (02) : 163 - 172
  • [9] An Ensemble Machine Learning Framework for Cotton Crop Yield Prediction Using Weather Parameters: A Case Study of Pakistan
    Haider, Syed Tahseen
    Ge, Wenping
    Li, Jianqiang
    Rehman, Saif Ur
    Imran, Azhar
    Sharaf, Mohamed Abdel Fattah
    Haider, Syed Muhammad
    IEEE ACCESS, 2024, 12 : 124045 - 124061
  • [10] Machine learning-based prediction and performance study of transparent soil properties
    Wang, Bo
    Hou, Hengjun
    Zhu, Zhengwei
    Xiao, Wang
    SMART STRUCTURES AND SYSTEMS, 2021, 28 (02) : 289 - 304