Deep learning-assisted comparative analysis of animal trajectories with DeepHL

被引:31
|
作者
Maekawa, Takuya [1 ]
Ohara, Kazuya [1 ]
Zhang, Yizhe [1 ]
Fukutomi, Matasaburo [2 ]
Matsumoto, Sakiko [3 ,4 ]
Matsumura, Kentarou [4 ]
Shidara, Hisashi [5 ]
Yamazaki, Shuhei J. [6 ]
Fujisawa, Ryusuke [7 ]
Ide, Kaoru [8 ]
Nagaya, Naohisa [9 ]
Yamazaki, Koji [10 ]
Koike, Shinsuke [11 ]
Miyatake, Takahisa [4 ]
Kimura, Koutarou D. [6 ,12 ]
Ogawa, Hiroto [5 ]
Takahashi, Susumu [8 ]
Yoda, Ken [3 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka, Japan
[2] Hokkaido Univ, Grad Sch Life Sci, Sapporo, Hokkaido, Japan
[3] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi, Japan
[4] Okayama Univ, Grad Sch Environm & Life Sci, Okayama, Japan
[5] Hokkaido Univ, Dept Biol Sci, Sapporo, Hokkaido, Japan
[6] Osaka Univ, Grad Sch Sci, Osaka, Japan
[7] Kyushu Inst Technol, Grad Sch Comp Sci & Syst Engn, Iizuka, Fukuoka, Japan
[8] Doshisha Univ, Grad Sch Brain Sci, Kyotanabe, Japan
[9] Kyoto Sangyo Univ, Dept Intelligent Syst, Kyoto, Japan
[10] Tokyo Univ Agr, Dept Forest Sci, Tokyo, Japan
[11] Tokyo Univ Agr & Technol, Grad Sch Agr, Tokyo, Japan
[12] Nagoya City Univ, Grad Sch Sci, Nagoya, Aichi, Japan
关键词
NEURAL-NETWORKS; GO; BEHAVIORS; DEATH; MODEL; GAME;
D O I
10.1038/s41467-020-19105-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A comparative analysis of animal behavior (e.g., male vs. female groups) has been widely used to elucidate behavior specific to one group since pre-Darwinian times. However, big data generated by new sensing technologies, e.g., GPS, makes it difficult for them to contrast group differences manually. This study introduces DeepHL, a deep learning-assisted platform for the comparative analysis of animal movement data, i.e., trajectories. This software uses a deep neural network based on an attention mechanism to automatically detect segments in trajectories that are characteristic of one group. It then highlights these segments in visualized trajectories, enabling biologists to focus on these segments, and helps them reveal the underlying meaning of the highlighted segments to facilitate formulating new hypotheses. We tested the platform on a variety of trajectories of worms, insects, mice, bears, and seabirds across a scale from millimeters to hundreds of kilometers, revealing new movement features of these animals. Comparative analysis of animal behaviour using locomotion data such as GPS data is difficult because the large amount of data makes it difficult to contrast group differences. Here the authors apply deep learning to detect and highlight trajectories characteristic of a group across scales of millimetres to hundreds of kilometres.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deep learning-assisted comparative analysis of animal trajectories with DeepHL
    Takuya Maekawa
    Kazuya Ohara
    Yizhe Zhang
    Matasaburo Fukutomi
    Sakiko Matsumoto
    Kentarou Matsumura
    Hisashi Shidara
    Shuhei J. Yamazaki
    Ryusuke Fujisawa
    Kaoru Ide
    Naohisa Nagaya
    Koji Yamazaki
    Shinsuke Koike
    Takahisa Miyatake
    Koutarou D. Kimura
    Hiroto Ogawa
    Susumu Takahashi
    Ken Yoda
    Nature Communications, 11
  • [2] Deep learning-assisted Hubble parameter analysis
    Salti, Mehmet
    Kangal, Evrim Ersin
    Zengin, Bilgin
    MODERN PHYSICS LETTERS A, 2024, 39 (04)
  • [3] Deep learning-assisted analysis of automobiles handling performances
    Sapienza, Davide
    Paganelli, Davide
    Prato, Marco
    Bertogna, Marko
    Spallanzani, Matteo
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2022, 13 (01) : 78 - 95
  • [4] Deep learning-assisted analysis of HRTEM images of crystalline nanoparticles
    Zhu, Xiaoyang
    Mao, Yu
    Liu, Jizi
    Chen, Yi
    Chen, Chuan
    Li, Yan
    Huang, Xiao
    Gu, Ning
    NANOSCALE, 2023, 15 (35) : 14496 - 14504
  • [5] Deep learning-assisted light sheet holography
    Asoudegi, Nima
    Dorrah, Ahmed h.
    Mojahedi, Mo
    OPTICS EXPRESS, 2024, 32 (02) : 1161 - 1175
  • [6] Deep Learning-Assisted Video Compression Framework
    Man, Hengyu
    Yu, Chang
    Xing, Feng
    Cheng, Yang
    Zheng, Bo
    Fan, Xiaopeng
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3210 - 3214
  • [7] Deep learning-assisted fluorescence spectroscopy for food quality and safety analysis
    Yuan, Yuan
    Ji, Zengtao
    Fan, Yanwei
    Xu, Qian
    Shi, Ce
    Lyu, Jian
    Ertbjerg, Per
    TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2025, 156
  • [8] Deep learning-assisted phase equilibrium analysis for producing natural hydrogen
    Zhang, Tao
    Zhang, Yanhui
    Katterbauer, Klemens
    Al Shehri, Abdallah
    Sun, Shuyu
    Hoteit, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 473 - 486
  • [9] Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis
    Jamali, Vida
    Hargus, Cory
    Ben-Moshe, Assaf
    Aghazadeh, Amirali
    Hyun Dong Ha
    Mandadapu, Kranthi K.
    Alivisatos, A. Paul
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)
  • [10] Deep Learning-Assisted Discovery of Protein Entangling Motifs
    Deng, Puqing
    Xu, Lianjie
    Wei, Ying
    Sun, Fei
    Li, Linyan
    Zhang, Wen-Bin
    Gao, Hanyu
    BIOMACROMOLECULES, 2025, 26 (03) : 1520 - 1529